Do there exist three points \(A\), \(B\) and \(C\) on the plane such that for any point \(X\) the length of at least one of the segments \(XA\), \(XB\) and \(XC\) is irrational?
Ten circles are marked on the circle. How many non-closed non-self-intersecting nine-point broken lines exist with vertices at these points?
From the set of numbers 1 to \(2n\), \(n + 1\) numbers are chosen. Prove that among the chosen numbers there are two, one of which is divisible by another.
How many are there six-digit numbers that are divisible by \(5\)?
How many nine-digit numbers exist, the sum of the digits of which is even?
A sack contains 70 marbles, 20 red, 20 blue, 20 yellow, and the rest black or white. What is the smallest number of marbles that need to be removed from the sack, without looking, in order for there to be no less than 10 marbles of the same colour among the removed marbles.
There are \(2k+1\) cards numbered with the numbers \(1\) to \(2k+1\). What is the largest number of cards that can be chosen so that no number on a chosen card is equal to the sum of two numbers from two other chosen cards?
We are given 51 two-digit numbers – we will count one-digit numbers as two-digit numbers with a leading 0. Prove that it is possible to choose 6 of these so that no two of them have the same digit in the same column.
You are given 1002 different integers that are no greater than 2000. Prove that it is always possible to choose three of the given numbers so that the sum of two of them is equal to the third.
Will this still always be possible if we are given 1001 integers rather than 1002?
In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?