Find the sums of the following series:
a) \({\frac {1} {1 \times 2}} + {\frac {1} {2 \times 3}} + {\frac {1} {3 \times 4}} + {\frac {1} {4 \times 5}} + \dots\);
b) \({\frac {1} {1 \times 2 \times 3}} + {\frac {1} {2 \times 3 \times 4}} + {\frac {1} {3 \times 4 \times 5}} + {\frac {1} {4 \times 5 \times 6}} + \dots\);
c) \({\frac {0!} {r!}} + {\frac {1!} {(r-1)!}} + {\frac {2!} {(r-2) !}} + {\frac {3!} {(r-3)!}} + \dots\) for \(r \geq 2\).
In a box, there are 10 white and 15 black balls. Four balls are removed from the box. What is the probability that all of the removed balls will be white?
Write at random a two-digit number. What is the probability that the sum of the digits of this number is 5?
There are three boxes, in each of which there are balls numbered from 0 to 9. One ball is taken from each box. What is the probability that
a) three ones were taken out;
b) three equal numbers were taken out?
A player in the card game Preferans has 4 trumps, and the other 4 are in the hands of his two opponents. What is the probability that the trump cards are distributed a) \(2: 2\); b) \(3: 1\); c) \(4: 0\)?
Determine all prime numbers \(p\) and \(q\) such that \(p^2 - 2q^2 = 1\) holds.
Suppose that there are 15 prime numbers forming an arithmetic progression with a difference of \(d\). Prove that \(d >30,000\).
Let \(a\), \(b\), \(c\) be integers; where \(a\) and \(b\) are not equal to zero.
Prove that the equation \(ax + by = c\) has integer solutions if and only if \(c\) is divisible by \(d = \mathrm{GCD} (a, b)\).
Numbers \(a, b, c\) are integers with \(a\) and \(b\) being coprime. Let us assume that integers \(x_0\) and \(y_0\) are a solution for the equation \(ax + by = c\).
Prove that every solution for this equation has the same form \(x = x_0 + kb\), \(y = y_0 - ka\), with \(k\) being a random integer.
Could it be that a) \(\sigma(n) > 3n\); b) \(\sigma(n) > 100n\)?