Prove the equalities:
a) \(z + \overline {z} = 2 \operatorname{Re} z\);
b) \(z - \overline {z} = 2i \operatorname{Im} z\);
c) \(\overline {z} z = |z|^2\).
It is known that \(\cos \alpha^{\circ} = 1/3\). Is \(\alpha\) a rational number?
Let \(a, b\) be positive integers and \((a, b) = 1\). Prove that the quantity cannot be a real number except in the following cases \((a, b) = (1, 1)\), \((1,3)\), \((3,1)\).
Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).
For what values of \(n\) does the polynomial \((x+1)^n - x^n - 1\) divide by:
a) \(x^2 + x + 1\); b) \((x^2 + x + 1)^2\); c) \((x^2 + x + 1)^3\)?
a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.
b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).
Find the largest and smallest values of the functions
a) \(f_1 (x) = a \cos x + b \sin x\); b) \(f_2 (x) = a \cos^2x + b \cos x \sin x + c \sin^2x\).
Prove that the function \(\cos \sqrt {x}\) is not periodic.
Prove the formulae: \(\arcsin (- x) = - \arcsin x\), \(\arccos (- x) = \pi - \arccos x\).
Prove that amongst any 7 different numbers it is always possible to choose two of them, \(x\) and \(y\), so that the following inequality was true: \[0 < \frac{x-y}{1+xy} < \frac{1}{\sqrt3}.\]