Problems

Age
Difficulty
Found: 1679

Prove that amongst any 7 different numbers it is always possible to choose two of them, \(x\) and \(y\), so that the following inequality was true: \[0 < \frac{x-y}{1+xy} < \frac{1}{\sqrt3}.\]

Old calculator I.

a) Suppose that we want to find \(\sqrt[3]{x}\) (\(x> 0\)) on a calculator that can find \(\sqrt{x}\) in addition to four ordinary arithmetic operations. Consider the following algorithm. A sequence of numbers \(\{y_n\}\) is constructed, in which \(y_0\) is an arbitrary positive number, for example, \(y_0 = \sqrt{\sqrt{x}}\), and the remaining elements are defined by \(y_{n + 1} = \sqrt{\sqrt{x y_n}}\) (\(n \geq 0\)).

Prove that \(\lim\limits_{n\to\infty} y_n = \sqrt[3]{x}\).

b) Construct a similar algorithm to calculate the fifth root.

An iterative polyline serves as a geometric interpretation of the iteration process. To construct it, on the \(Oxy\) plane, the graph of the function \(f (x)\) is drawn and the bisector of the coordinate angle is drawn, as is the straight line \(y = x\). Then on the graph of the function the points \[A_0 (x_0, f (x_0)), A_1 (x_1, f (x_1)), \dots, A_n (x_n, f (x_n)), \dots\] are noted and on the bisector of the coordinate angle – the points \[B_0 (x_0, x_0), B_1 (x_1, x_1), \dots , B_n (x_n, x_n), \dots.\] The polygonal line \(B_0A_0B_1A_1 \dots B_nA_n \dots\) is called iterative.

Construct an iterative polyline from the following information:

a) \(f (x) = 1 + x/2\), \(x_0 = 0\), \(x_0 = 8\);

b) \(f (x) = 1/x\), \(x_0 = 2\);

c) \(f (x) = 2x - 1\), \(x_0 = 0\), \(x_0 = 1{,}125\);

d) \(f (x) = - 3x/2 + 6\), \(x_0 = 5/2\);

e) \(f (x) = x^2 + 3x - 3\), \(x_0 = 1\), \(x_0 = 0{,}99\), \(x_0 = 1{,}01\);

f) \(f (x) = \sqrt{1 + x}\), \(x_0 = 0\), \(x_0 = 8\);

g) \(f (x) = x^3/3 - 5x^2/x + 25x/6 + 3\), \(x_0 = 3\).

The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).

Is it true that this sequence is limited?

Prove that for a monotonically increasing function \(f (x)\) the equations \(x = f (f (x))\) and \(x = f (x)\) are equivalent.

The sequence of numbers \(a_1, a_2, a_3, \dots\) is given by the following conditions \(a_1 = 1\), \(a_{n + 1} = a_n + \frac {1} {a_n^2}\) (\(n \geq 0\)).

Prove that

a) this sequence is unbounded;

b) \(a_{9000} > 30\);

c) find the limit \(\lim \limits_ {n \to \infty} \frac {a_n} {\sqrt [3] n}\).

We are given rational positive numbers \(p, q\) where \(1/p + 1/q = 1\). Prove that for positive \(a\) and \(b\), the following inequality holds: \(ab \leq \frac{a^p}{p} + \frac{b^q}{q}\).

Let \(p\) and \(q\) be positive numbers where \(1 / p + 1 / q = 1\). Prove that \[a_1b_1 + a_2b_2 + \dots + a_nb_n \leq (a_1^p + \dots a_n^p)^{1/p}(b_1^q +\dots + b_n^q)^{1/q}\] The values of the variables are considered positive.