Problems

Age
Difficulty
Found: 1186

Peter came to the Museum of Modern Art and saw a square painting in a frame of an unusual shape, consisting of \(21\) equal triangles. Peter was interested in what the angles of these triangles were equal to. Help him find them.

image

Red, blue and green chameleons live on the island, one day \(35\) chameleons stood in a circle. A minute later, they all changed color at the same time, each changed into the color of one of their neighbours. A minute later, everyone again changed the colors at the same time into the color of one of their neighbours. Could it turn out that each chameleon turned red, blue, and green at some point?

Is it possible to paint \(15\) segments in the picture below in three colours in such a way, that no three segments of the same colour have a common end?

image

In the \(n\times n\) table, the two opposite corner squares are black and the rest are white. Find the smallest number of white cells that is enough to be repainted black in order to make all the cells of the table black with only there transformations: repaint all the cells of one column, or all the cells of one row into the opposite colour.

A monkey becomes happy when they eat three different fruits. What is the largest number of monkeys that can become happy with \(20\) pears, \(30\) bananas, \(40\) peaches, and \(50\) tangerines?

Let’s play some games today! We will play a classic game known as nim, which is thought to be one of the oldest games.

Typically people play nim using matchsticks, though stones and coins are popular too. There are a few heaps of matchsticks in nim. Players take turns to remove matchsticks from a heap of their choosing. The player can remove any number of matchsticks they wish from that heap. Whoever has no matchsticks left to take loses.

This following position will be written as \(\text{Nim}(3,3,3)\):

image

As another example, this is \(\text{Nim}(1,2,3,4)\):

image

We will omit heaps of size zero, so \(\text{Nim}(3,0,3,0,3)\) is the same as \(\text{Nim}(3,3,3)\).

Nim is important because a large class of games are equivalent to it despite its simple appearance. The interested reader should look up "Sprague-Grundy Theorem".

Let us introduce a few terms that will be helpful for analyzing games. A game \(G\) consists of some positions and a set of rules. A position \(g\) in the game \(G\) is called a winning position if the player starting this turn has a winning strategy. This means as long as the player starting this turn continues to play optimally, the second player has to lose. Conversely, a position \(g\) is a losing position if the player starting this turn has no winning strategy.

Let us define XOR (or addition mod 2). XOR is defined for 0 and 1 only. Here is a table recording the values of XOR:

XOR 0 1
0 0 1
1 1 0

Now we define the important concept of nim-sum. Given two natural numbers \(x\) and \(y\), we first convert them into binary representations and then compute XOR on individual digits. The resulting number, denoted \(x \oplus y\), is the nim-sum of \(x\) and \(y\). Here is an example.

1 0 1 1 0
XOR 0 0 1 0 1
1 0 0 1 1

This is simply saying \(22 \oplus 5 = 19\). Note that \(22=(10110)_2\) and \(5=(00101)_2\).

Verify \((x \oplus y) \oplus z = x \oplus (y \oplus z)\), so we can speak of \(x \oplus y \oplus z\) with no ambiguity.

Show that \(x \oplus y = 0\) if and only if \(x = y\). Remember that \(x \oplus y\) denotes the nim-sum of \(x\) and \(y\).

Show that \(\text{Nim}(x,y,z)\) is a losing position if and only if \(x \oplus y \oplus z = 0\). Remember that \(x \oplus y\) denotes the nim-sum of \(x\) and \(y\).

Is \(\text{Nim}(7,11,15)\) a winning position or a losing position? If it is a winning position, what is the optimal move?