Problems

Age
Difficulty
Found: 1477

Show that there are infinitely many triples of consecutive integers, each of which is a sum of the square of two integers.

Suppose that Pell’s equation \(x^2-dy^2=1\) has a solution \((x_1,y_1)\) where \(x_1,y_1\) are positive and \(y_1\) is minimal among all solutions with positive \(x,y\). Show that if \(x+y\sqrt{d}\) gives a solution to \(x^2-dy^2=1\), then \(x+y\sqrt{d}=\pm(x_1+y_1\sqrt{d})^k\) for some integer \(k\).

Suppose that \(x_1+y_1\sqrt{d}\) gives a solution to Pell’s equation \(x^2-dy^2=1\). Define a sequence \(x_n+y_n\sqrt{d} = (x_1+y_1\sqrt{d})^n\). Show that we have the recurrence relations \(x_{n+2} = 2x_1x_{n+1}-x_n\) and \(y_{n+2} = 2x_1y_{n+1}-y_n\).

Prove that the only solution to \(5^a-3^b=2\) with \(a,b\) being positive integers is \(a=b=1\).

Show that Pell’s equation \(x^2-dy^2=1\) has a nontrivial solution.

For the following equations, find the integer solution \((x,y)\) with the smallest possible absolute value of \(y\).

  • \(x^2 - 7y^2 = 1\);

  • \(x^2 - 7y^2 = 29\).

Find the integer solution \((x,y)\) with the smallest possible absolute value of \(y\). \(x^2 - 2y^2 = 1\);

This equation helps to find all the square-triangular numbers, namely all the numbers that are perfect squares and can be represented as the sum \(1+2+3+...m\) for some \(m\). Finding such a number is equivalent to finding a solution to the equation: \(2n^2 = m(m+1)\). Or finding a solution to the Pell’s equation \(x^2-2y^2 = 1\) for \(x=2m+1\), \(y=2n\).