Problems

Age
Difficulty
Found: 1545

The Chinese remainder theorem is a fundamental result in number theory that allows one to decompose congruence problems to into simpler ones. The theorem says the following.

Suppose that \(m_1,m_2\) are coprime (i.e: they have no prime factors in common) natural numbers and \(a_1,a_2\) are integers. Then there is a unique integer \(x\) in the range \(0\leq x \leq m_1m_2-1\) such that \[x \equiv a_1 \pmod{m_1} \quad \text{ and } \quad x \equiv a_2 \pmod{m_2},\] where the notation \(x\equiv y \pmod{z}\) means that \(x-y=kz\) for some integer \(k\). Prove the Chinese remainder theorem using the pigeonhole principle.

We have ten positive integers \(x_1,\dots,x_{10}\) such that \(10\leq x_i\leq 99\) for \(1\leq i\leq 10\). Prove that there are two disjoint subsets of \(x_1,\dots,x_{10}\) with equal sums of their elements.

Let \(P(x)\) be a polynomial with integral coefficients. Suppose there exist four distinct integers \(a,b,c,d\) with \(P(a) = P(b) = P(c) = P(d) = 5\). Prove that there is no integer \(k\) with \(P(k) = 8\).

For which natural number \(n\) is the polynomial \(1+x^2+x^4+\dots+x^{2n-2}\) divisible by the polynomial \(1 +x+x^2+\dots+x^{n-1}\)?

Let \(P(x)\) be a polynomial with integer coefficients. Set \(P^1(x) = P(x)\) and \(P^{i+1}(x) = P(P^i(x))\). Show that if \(t\) is an integer such that \(P^k(t)=t\) for some natural number \(k\), then in fact we have \(P^2(t) = t\).

(IMO 2006) Let \(P(x)\) be a polynomial of degree \(n > 1\) with integer coefficients and let \(k\) be a positive integer. Consider the polynomial \(Q(x) = P^k(x)\). Prove that there are at most \(n\) integers \(t\) such that \(Q(t) = t\).

Calculate the value of: \[1\cdot \left(1+\frac{1}{2025} \right)^1 + 2\cdot \left(1+\frac{1}{2025} \right)^2 +\dots + 2025\cdot \left(1+\frac{1}{2025} \right)^{2025},\] and provide proof that your calculation is correct.

Every point in the plane is coloured red or blue. Show that there is a colour such that for any distance \(d\), there is a pair of points of that colour that are exactly distance \(d\) apart.

Downtown MathHattan has a grid pattern, with \(4\) streets going east-west and \(6\) streets south-north. You take a taxi from School (A) to cinema (point B), but you would like to stop by an ice cream shop first. In how many ways can a taxi get you there if you don’t want to take a route that is longer than necessary?

image

Gabby the Gnome has \(3\) cloaks of different colours: blue, green, and brown. He also has \(5\) different hats: \(3\) yellow and \(2\) red. Finally, he owns \(6\) different pairs of shoes: \(2\) yellow, and \(4\) red. Gabby is selecting an outfit: a cloak, a hat, and a pair of shoes. In how many ways can he do it if he wants the colour of his shoes to match the colour of the hat?