The teacher wrote on the board in alphabetical order all possible \(2^n\) words consisting of \(n\) letters A or B. Then he replaced each word with a product of \(n\) factors, correcting each letter A by \(x\), and each letter B by \((1 - x)\), and added several of the first of these polynomials in \(x\). Prove that the resulting polynomial is either a constant or increasing function in \(x\) on the interval \([0, 1]\).
We are given a polynomial \(P(x)\) and numbers \(a_1\), \(a_2\), \(a_3\), \(b_1\), \(b_2\), \(b_3\) such that \(a_1a_2a_3 \ne 0\). It turned out that \(P (a_1x + b_1) + P (a_2x + b_2) = P (a_3x + b_3)\) for any real \(x\). Prove that \(P (x)\) has at least one real root.
We are given \(n+1\) different natural numbers, which are less than \(2n\) (\(n>1\)). Prove that among them there will always be three numbers, where the sum of two of them is equal to the third.
Let \(x_1, x_2, \dots , x_n\) be some numbers belonging to the interval \([0, 1]\). Prove that on this segment there is a number \(x\) such that \[\frac{1}{n} (|x - x_1| + |x - x_2| + \dots + |x - x_n|) = 1/2.\]
Prove there are no natural numbers \(a\) and \(b\), such as \(a^2 - 3b^2 = 8\).
Solve the equation \(3x + 5y = 7\) in integers.
Determine all the integer solutions for the equation \(21x + 48y = 6\).
Solve the equations \(x^2 = 14 + y^2\) in integers.
Let \(p\) be a prime number, and \(a\) an integer number not divisible by \(p\). Prove that there is a positive integer \(b\) such that \(ab \equiv 1 \pmod p\).
Each of the 102 pupils of one school is friends with at least 68 others. Prove that among them there are four who have the same number of friends.