Prove that for any number \(d\), which is not divisible by \(2\) or by \(5\), there is a number whose decimal notation contains only ones and which is divisible by \(d\).
Two people toss a coin: one tosses it 10 times, the other – 11 times. What is the probability that the second person’s coin showed heads more times than the first?
A spherical planet is surrounded by 25 point asteroids. Prove, that at any given moment there will be a point on the surface of the planet from which an astronomer will not be able to see more than 11 asteroids.
On a line, there are 50 segments. Prove that either it is possible to find some 8 segments all of which have a shared intersection, or there can be found 8 segments, no two of which intersect.
There are 30 students in the class. Prove that the probability that some two students have the same birthday is more than 50%.
10 magazines lie on a coffee table, completely covering it. Prove that you can remove five of them so that the remaining magazines will cover at least half of the table.
Prove that the infinite decimal \(0.1234567891011121314 \dots\) (after the decimal point, all of the natural numbers are written out in order) is an irrational number.
Are there any irrational numbers \(a\) and \(b\) such that the degree of \(a^b\) is a rational number?
Construct a function defined at all points on a real line which is continuous at exactly one point.
In a square which has sides of length 1 there are 100 figures, the total area of which sums to more than 99. Prove that in the square there is a point which belongs to all of these figures.