Problems

Age
Difficulty
Found: 1189

When boarding a plane, a line of \(n\) passengers was formed, each of whom has a ticket for one of the \(n\) places. The first in the line is a crazy old man. He runs onto the plane and sits down in a random place (perhaps, his own). Then passengers take turns to take their seats, and in the case that their place is already occupied, they sit randomly on one of the vacant seats. What is the probability that the last passenger will take his assigned seat?

10 natural numbers are written on a blackboard. Prove that it is always possible to choose some of these numbers and write “\(+\)” or “\(-\)” between them so that the resulting algebraic sum is divisible by 1001.

Prove that the equation \[a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x + \dots + a_n \sin nx + b_n \cos nx = 0\] has at least one root for any values of \(a_1 , b_1, a_2, b_2, \dots, a_n, b_n\).

Let \(f (x)\) be a polynomial about which it is known that the equation \(f (x) = x\) has no roots. Prove that then the equation \(f (f (x)) = x\) does not have any roots.

Prove that there exist numbers, that can be presented in no fewer than 100 ways in the form of a summation of 20001 terms, each of which is the 2000th power of a whole number.

An area of airspace contains clouds. It turns out that the area can be divided by 10 aeroplanes into regions such that each region contains no more than one cloud. What is the largest number of clouds an aircraft can fly through whilst holding a straight line course.

Let \(f\) be a continuous function defined on the interval \([0; 1]\) such that \(f (0) = f (1) = 0\). Prove that on the segment \([0; 1]\) there are 2 points at a distance of 0.1 at which the function \(f 4(x)\) takes equal values.