Problems

Age
Difficulty
Found: 1194

There are \(2k+1\) cards numbered with the numbers \(1\) to \(2k+1\). What is the largest number of cards that can be chosen so that no number on a chosen card is equal to the sum of two numbers from two other chosen cards?

We are given 51 two-digit numbers – we will count one-digit numbers as two-digit numbers with a leading 0. Prove that it is possible to choose 6 of these so that no two of them have the same digit in the same column.

You are given 1002 different integers that are no greater than 2000. Prove that it is always possible to choose three of the given numbers so that the sum of two of them is equal to the third.

Will this still always be possible if we are given 1001 integers rather than 1002?

On a plane, six points are given so that no three of them lie on the same line. Each pair of points is connected by a blue or red segment.

Prove that among these points three such points can be chosen so that all sides of the triangle formed by them will be of the same colour.

How many rational terms are contained in the expansion of

a) \((\sqrt 2 + \sqrt[4]{3})^{100}\);

b) \((\sqrt 2 + \sqrt[3]{3})^{300}\)?

How many six-digit numbers exist, for which each succeeding number is smaller than the previous one?

Why are the equalities \(11^2 = 121\) and \(11^3 = 1331\) similar to the lines of Pascal’s triangle? What is \(11^4\) equal to?