Problems

Age
Difficulty
Found: 1234

Liouville’s discrete theorem. Let \(f (x, y)\) be a bounded harmonic function (see the definition in problem number 11.28), that is, there exists a positive constant \(M\) such that \(\forall (x, y) \in \mathbb {Z}^2\) \(| f (x, y) | \leq M\). Prove that the function \(f (x, y)\) is equal to a constant.

Definition. The sequence of numbers \(a_0, a_1, \dots , a_n, \dots\), which, with the given \(p\) and \(q\), satisfies the relation \(a_{n + 2} = pa_{n + 1} + qa_n\) (\(n = 0,1,2, \dots\)) is called a linear recurrent sequence of the second order.

The equation \[x^2-px-q = 0\] is called a characteristic equation of the sequence \(\{a_n\}\).

Prove that, if the numbers \(a_0\), \(a_1\) are fixed, then all of the other terms of the sequence \(\{a_n\}\) are uniquely determined.

The frog jumps over the vertices of the hexagon \(ABCDEF\), each time moving to one of the neighbouring vertices.

a) How many ways can it get from \(A\) to \(C\) in \(n\) jumps?

b) The same question, but on condition that it cannot jump to \(D\)?

c) Let the frog’s path begin at the vertex \(A\), and at the vertex \(D\) there is a mine. Every second it makes another jump. What is the probability that it will still be alive in \(n\) seconds?

d)* What is the average life expectancy of such frogs?

Find the coefficient of \(x\) for the polynomial \((x - a) (x - b) (x - c) \dots (x - z)\).

Prove that the polynomial \(P (x)\) is divisible by its derivative if and only if \(P (x)\) has the form \(P(x) = a_n(x - x_0)^n\).

Prove that for \(n > 0\) the polynomial \[P (x) = n^2x^{n + 2} - (2n^2 + 2n - 1) x^{n + 1} + (n + 1)^2x^n - x - 1\] is divisible by \((x - 1)^3\).

Prove that for \(n> 0\) the polynomial \(x^{2n + 1} - (2n + 1)x^{n + 1} + (2n + 1)x^n - 1\) is divisible by \((x - 1)^3\).

Prove that the polynomial \(P (x) = a_0 + a_1x + \dots + a_nx^n\) has a number \(-1\) which is a root of multiplicity \(m + 1\) if and only if the following conditions are satisfied: \[\begin{aligned} a_0 - a_1 + a_2 - a_3 + \dots + (-1)^{n}a_n &= 0,\\ - a_1 + 2a_2 - 3a_3 + \dots + (-1)^{n}na_n &= 0,\\ \dots \\ - a_1 + 2^{m}a_2 - 3^{m}a_3 + \dots + (-1)^{n}n^{m}a_n &= 0. \end{aligned}\]

A class contains 33 pupils, who have a combined age of 430 years. Prove that if we picked the 20 oldest pupils they would have a combined age of no less than 260 years. The age of any given pupil is a whole number.