Harry thought of two positive numbers \(x\) and \(y\). He wrote down the numbers \(x + y\), \(x - y\), \(xy\) and \(x/y\) on a board and showed them to Sam, but did not say which number corresponded to which operation.
Prove that Sam can uniquely figure out \(x\) and \(y\).
The functions \(f\) and \(g\) are defined on the entire number line and are reciprocal. It is known that \(f\) is represented as a sum of a linear and a periodic function: \(f (x) = kx + h (x)\), where \(k\) is a number, and \(h\) is a periodic function. Prove that \(g\) is also represented in this form.
Is there a positive integer \(n\) such that \[\sqrt{n}{17\sqrt{5} + 38} + \sqrt{n}{17\sqrt{5} - 38} = 2\sqrt{5}\,?\]
Does there exist a function \(f (x)\) defined for all real numbers such that \(f(\sin x) + f (\cos x) = \sin x\)?
Author: G. Zhukov
The square trinomial \(f (x) = ax^2 + bx + c\) that does not have roots is such that the coefficient \(b\) is rational, and among the numbers \(c\) and \(f (c)\) there is exactly one irrational.
Can the discriminant of the trinomial \(f (x)\) be rational?
A firm recorded its expenses in pounds for 100 items, creating a list of 100 numbers (with each number having no more than two decimal places). Each accountant took a copy of the list and found an approximate amount of expenses, acting as follows. At first, he arbitrarily chose two numbers from the list, added them, discarded the sum after the decimal point (if there was anything) and recorded the result instead of the selected two numbers. With the resulting list of 99 numbers, he did the same, and so on, until there was one whole number left in the list. It turned out that in the end all the accountants ended up with different results. What is the largest number of accountants that could work in the company?
Author: A. Khrabrov
Do there exist integers \(a\) and \(b\) such that
a) the equation \(x^2 + ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + ax + b = 0\) does have roots?
b) the equation \(x^2 + 2ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + 2ax + b = 0\) does have roots?
Note that here, square brackets represent integers and curly brackets represent non-integer values or 0.
a) There is an unlimited set of cards with the words “abc”, “bca”, “cab” written. Of these, the word written is determined according to this rule. For the initial word, any card can be selected, and then on each turn to the existing word, you can either add on a card to the left or to the right, or cut the word anywhere (between the letters) and put a card there. Is it possible to make a palindrome with this method?
b) There is an unlimited set of red cards with the words “abc”, “bca”, “cab” and blue cards with the words “cba”, “acb”, “bac”. Using them, according to the same rules, a palindrome was made. Is it true that the same number of red and blue cards were used?
A cubic polynomial \(f (x)\) is given. Let’s find a group of three different numbers \((a, b, c)\) such that \(f (a)= b\), \(f (b) = c\) and \(f (c) = a\). It is known that there were eight such groups \([a_i, b_i, c_i]\), \(i = 1, 2, \dots , 8\), which contains 24 different numbers. Prove that among eight numbers of the form \(a_i + b_i + c_i\) at least three are different.
For the anniversary of the London Mathematical Olympiad, the mint coined three commemorative coins. One coin turned out correctly, the second coin on both sides had two heads, and the third had tails on both sides. The director of the mint, without looking, chose one of these three coins and tossed it at random. She got heads. What is the probability that the second side of this coin also has heads?