Problems

Age
Difficulty
Found: 1140

Find the contrapositive of the statement: “If in every school there is a class with at least \(20\) students, then there is a school with at least \(10\) students".

Show that if \(x,y,z\) are distinct nonzero numbers such that \(x+y+z = 0\), then we have \[\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right) = 9.\]

The Chinese remainder theorem is a fundamental result in number theory that allows one to decompose congruence problems to into simpler ones. The theorem says the following.

Suppose that \(m_1,m_2\) are coprime (i.e: they have no prime factors in common) natural numbers and \(a_1,a_2\) are integers. Then there is a unique integer \(x\) in the range \(0\leq x \leq m_1m_2-1\) such that \[x \equiv a_1 \pmod{m_1} \quad \text{ and } \quad x \equiv a_2 \pmod{m_2},\] where the notation \(x\equiv y \pmod{z}\) means that \(x-y=kz\) for some integer \(k\). Prove the Chinese remainder theorem using the pigeonhole principle.

We have ten positive integers \(x_1,\dots,x_{10}\) such that \(10\leq x_i\leq 99\) for \(1\leq i\leq 10\). Prove that there are two disjoint subsets of \(x_1,\dots,x_{10}\) with equal sums of their elements.

Calculate the value of: \[1\cdot \left(1+\frac{1}{2025} \right)^1 + 2\cdot \left(1+\frac{1}{2025} \right)^2 +\dots + 2025\cdot \left(1+\frac{1}{2025} \right)^{2025},\] and provide proof that your calculation is correct.

Every point in the plane is coloured red or blue. Show that there is a colour such that for any distance \(d\), there is a pair of points of that colour that are exactly distance \(d\) apart.

Downtown MathHattan has a grid pattern, with \(4\) streets going east-west and \(6\) streets south-north. You take a taxi from School (A) to cinema (point B), but you would like to stop by an ice cream shop first. In how many ways can a taxi get you there if you don’t want to take a route that is longer than necessary?

image

Gabby the Gnome has \(3\) cloaks of different colours: blue, green, and brown. He also has \(5\) different hats: \(3\) yellow and \(2\) red. Finally, he owns \(6\) different pairs of shoes: \(2\) yellow, and \(4\) red. Gabby is selecting an outfit: a cloak, a hat, and a pair of shoes. In how many ways can he do it if he wants the colour of his shoes to match the colour of the hat?

An airplane is flying from Prague to Tokyo, which are cities in the northern hemisphere with different latitudes. Suppose that the airplane must touch the equator. Could you help the pilot find the shortest path that the airplane can take, assuming that the Earth is a perfect sphere?

Suppose that we have symbols \(a,b,c,d,e\) and an operation \(\clubsuit\) on the symbols satisfying the following rules:

  1. \(x\;\clubsuit\;e = x\), where \(x\) can be any of \(a,b,c,d,e\).

  2. \(a\;\clubsuit\;c = c\;\clubsuit\;a = b\;\clubsuit\;d = d\;\clubsuit\;b = e\).

  3. any bracketing of the same string of symbols are the same; for example, \(((a\;\clubsuit\;c)\;\clubsuit\;d)\;\clubsuit\;(a\;\clubsuit\;d) = (a\;\clubsuit\;(c\;\clubsuit\;(d\;\clubsuit\;(a\;\clubsuit\;d))))\).

  4. \((a\;\clubsuit\;b)\clubsuit\;c = d\).

We use the power notation. If \(n\geq 1\) is a natural number, we write \(a^n\) for \((\dots(a\;\clubsuit\;a)\;\clubsuit\dots)\;\clubsuit\; a\), where \(a\) appears \(n\) times. Similarly for other symbols. Let \(p,q,r,s\geq 1\) be natural numbers. Express \(a^p\;\clubsuit\;b^q\;\clubsuit\;a^r\;\clubsuit\;b^s\) using the symbols \(a,b,c,d\) no more than once (power notation allowed).