Show that the difference between two consecutive square numbers is always odd.
Let \(n\) be a natural number and \(x=2n^2+n\). Prove that the sum of the square of the \(n+1\) consecutive integers starting at \(x\) is the sum of the square of the \(n\) consecutive integers starting at \(x+n+1\).
For example, when \(n=2\), we have \(10^2+11^2+12^2=13^2+14^2\)!
Find the contrapositive of the statement: “If in every school there is a class with at least \(20\) students, then there is a school with at least \(10\) students".
Show that if \(a\) and \(b\) are numbers, then \(a^2-b^2=(a-b)\times (a+b)\).
Show that if \(x,y,z\) are distinct nonzero numbers such that \(x+y+z = 0\), then we have \[\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right) = 9.\]
The Chinese remainder theorem is a fundamental result in number theory that allows one to decompose congruence problems to into simpler ones. The theorem says the following.
Suppose that \(m_1,m_2\) are coprime (i.e: they have no prime factors in common) natural numbers and \(a_1,a_2\) are integers. Then there is a unique integer \(x\) in the range \(0\leq x \leq m_1m_2-1\) such that \[x \equiv a_1 \pmod{m_1} \quad \text{ and } \quad x \equiv a_2 \pmod{m_2},\] where the notation \(x\equiv y \pmod{z}\) means that \(x-y=kz\) for some integer \(k\). Prove the Chinese remainder theorem using the pigeonhole principle.
We have ten positive integers \(x_1,\dots,x_{10}\) such that \(10\leq x_i\leq 99\) for \(1\leq i\leq 10\). Prove that there are two disjoint subsets of \(x_1,\dots,x_{10}\) with equal sums of their elements.
Calculate the value of: \[1\cdot \left(1+\frac{1}{2025} \right)^1 + 2\cdot \left(1+\frac{1}{2025} \right)^2 +\dots + 2025\cdot \left(1+\frac{1}{2025} \right)^{2025},\] and provide proof that your calculation is correct.
Every point in the plane is coloured red or blue. Show that there is a colour such that for any distance \(d\), there is a pair of points of that colour that are exactly distance \(d\) apart.
Downtown MathHattan has a grid pattern, with \(4\) streets going east-west and \(6\) streets south-north. You take a taxi from School (A) to cinema (point B), but you would like to stop by an ice cream shop first. In how many ways can a taxi get you there if you don’t want to take a route that is longer than necessary?
