Problems

Age
Difficulty
Found: 882

(a) Divide 55 walnuts into four groups consisting of different number of nuts.

(b) Divide 999 walnuts into four groups consisting of different number of nuts.

George knows a representation of number “8” as the sum of its divisors in which only divisor “1” appears twice: \[8=4+2+1+1.\] His brother showed George that such representation exists for number “16” as well: \[16=8+4+2+1+1.\] He apologies for forgetting an example considering number “32” but he is sure once he saw such representation for this number.

(a) Help George to work out a suitable representation for number “32”;

(b) Can you think of a number which has such representation consisting of 7 terms?

(c) Of 11 terms?

(d) Can you find a number which can be represented as a sum of its divisors which are all different (pay attention that we don’t allow repeating digit “1” twice!)?

(e) What if we require this representation to consist of 11 terms?

George claims that he knows two numbers such that their quotient is equal to their product. Can we believe him? Prove him wrong or provide a suitable example.

In the context of Example 14.2 what is the answer if we have five numbers instead of four? (i.e., can we get four distinct prime numbers then?)

Now George is sure he found two numbers with the quotient equal to their sum. And on top of that their product is still equal to the same value. Can it be true?

A maths teacher draws a number of circles on a piece of paper. When she shows this piece of paper to the young mathematician, he claims he can see only five circles. The maths teacher agrees. But when she shows the same piece of paper to another young mathematician, he says that there are exactly eight circles. The teacher confirms that this answer is also correct. How is that possible and how many circles did she originally draw on that piece of paper?

A group of three smugglers is offered to smuggle a chest full of treasures across the dangerous river. The boat they possess is old and frail. It can carry three smugglers without the chest, or it can carry the chest and only two smugglers. The price for this job is extremely high, and the gang is more than interested in completing the job. Think of a strategy the smugglers should follow to successfully transit the chest and themselves to the other shore.

It is easy to construct one equilateral triangle from three identical matches. Can we make four equilateral triangles by adding just three more matches identical to the original ones?

My mum once told me the following story: she was walking home late at night after sitting in the pub with her friends. She was then surrounded by a group of unfriendly looking people. They demanded: “money or your life?!” She was forced to give them her purse. She valued her life more, since she was pregnant with me at that time. According to her story she gave them two purses and two coins. Moreover, she claimed that one purse contained twice as many coins as the other purse. Immediately, I thought that the mum must have made a mistake or could not recall the details because of the shock and the amount of time that passed after that moment. But then I figured out how this could be possible. Can you?

(a) In a regular 10-gon we draw all possible diagonals. How many line segments are drawn? How many diagonals?

(b) Same questions for a regular 100-gon.

(c) Same questions for an arbitrary convex 100-gon.