On each of four cards there is written a natural number. Take two cards at random and add the numbers on them. With equal probability, this amount can be less than 9, equal to 9 or more 9. What numbers can be written on the cards?
There are two symmetrical cubes. Is it possible to write some numbers on their faces so that the sum of the points when throwing these cubes on the upwards facing face on landing takes the values 1, 2, ..., 36 with equal probabilities?
There are 25 children in a class. At random, two are chosen. The probability that both children will be boys is \(3/25\). How many girls are in the class?
In the first term of the year Daniel received five grades in mathematics with each of them being on a scale of 1 to 5, and the most common grade among them was a 5 . In this case it turned out that the median of all his grades was 4, and the arithmetic mean was 3.8. What grades could Daniel have?
There are fewer than 30 people in a class. The probability that at random a selected girl is an excellent student is \(3/13\), and the probability that at random a chosen boy is an excellent pupil is \(4/11\). How many excellent students are there in the class?
Anna, Boris and Fred decided to go to a children’s Christmas party. They agreed to meet at the bus stop, but they do not know who will come to what time. Each of them can come at a random time from 15:00 to 16:00. Fred is the most patient of them all: if he comes and finds that neither Anna nor Boris are at the bus stop, then Fred will wait for one of them for 15 minutes, and if he waits for more than 15 minutes and no one arrives he will go to the Christmas party by himself. Boris is less patient: he will only wait for 10 minutes. Anna is very impatient: she will not wait at all. However, if Boris and Fred meet, they will wait for Anna until 16:00. What is the probability that all of them will go to the Christmas party?
Three tired cowboys went into a bar, and hung their hats on the buffalo horn at the entrance. When the cowboys left at night, they were unable to distinguish one hat from another and therefore took the three hats at random. Find the likelihood that none of them took their own hat.
A die is thrown over and over again. Let \(P_n\) denote the probability that, at some point, the sum of the points, taken from the numbers that came out on the top face of the die, from all the rolls made, is \(n\). Prove that for \(n \geq 7\) the equality \(P_n = 1/6 (P_{n-1} + P_{n-2} + \dots + P_{n-6})\) is true.
On a roulette, any number from 0 to 2007 can be determined with the same probability. The roulette is spun time after time. Let \(P_k\) denote the probability that at some point the sum of the numbers that are determined by a ball being thrown on the roulette is \(k\). Which number is larger: \(P_{2007}\) or \(P_{2008}\)?
The figure shows the scheme of a go-karting route. The start and finish are at point \(A\), and the driver can go along the route as many times as he wants by going to point \(A\) and then back onto the circle.
It takes Fred one minute to get from \(A\) to \(B\) or from \(B\) to \(A\). It also takes one minute for Fred to go around the ring and he can travel along the ring in an anti-clockwise direction (the arrows in the image indicate the possible direction of movement). Fred does not turn back halfway along the route nor does not stop. He is allowed to be on the track for 10 minutes. Find the number of possible different routes (i.e. sequences of possible routes).