Problems

Age
Difficulty
Found: 975

The function \(f (x)\) is defined for all real numbers, and for any \(x\) the equalities \(f (x + 2) = f (2 - x)\) and \(f (x + 7) = f (7 - x)\) are satisfied. Prove that \(f (x)\) is a periodic function.

Once upon a time there were twenty spies. Each of them wrote an accusation against ten of his colleagues. Prove that at least ten pairs of spies have told on each other.

George drew an empty table of size \(50 \times 50\) and wrote on top of each column and to the left of each row, a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down the sum of the numbers written at the start of the corresponding row and column (“addition table”). What is the largest number of sums in this table that could be rational numbers?

Fred chose 2017 (not necessarily different) natural numbers \(a_1, a_2, \dots , a_{2017}\) and plays by himself in the following game. Initially, he has an unlimited supply of stones and 2017 large empty boxes. In one move Fred adds a1 stones to any box (at his choice), in any of the remaining boxes (of his choice) – \(a_2\) stones, ..., finally, in the remaining box – \(a_{2017}\) stones. His purpose is to ensure that eventually all the boxes have an equal number of stones. Could he have chosen the numbers so that the goal could be achieved in 43 moves, but is impossible for a smaller non-zero number of moves?

Gary drew an empty table of \(50 \times 50\) and wrote on top of each column and to the left of each row a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down a product of numbers written at the top of its column and to the left of the row (the “multiplication table”). What is the largest number of products in this table which could be rational numbers?

In one box, there are two pies with mushrooms, in another box there are two with cherries and in the third one, there is one with mushrooms and one with cherries. The pies look and weigh the same, so it’s not known what is in each one. The grandson needs to take one pie to school. The grandmother wants to give him a pie with cherries, but she is confused herself and can only determine the filling by breaking the pie, but the grandson does not want a broken pie, he wants a whole one.

a) Show that the grandmother can act so that the probability of giving the grandson a whole pie with cherries will be equal to \(2/3\).

b) Is there a strategy in which the probability of giving the grandson a whole pie with cherries is higher than \(2/3\)?

A sequence consists of 19 ones and 49 zeros, arranged in a random order. We call the maximal subsequence of the same symbols a “group”. For example, in the sequence 110001001111 there are five groups: two ones, then three zeros, then one one, then two zeros and finally four ones. Find the mathematical expectation of the length of the first group.

There are \(n\) random vectors of the form \((y_1, y_2, y_3)\), where exactly one random coordinate is equal to 1, and the others are equal to 0. They are summed up. A random vector a with coordinates \((Y_1, Y_2, Y_3)\) is obtained.

a) Find the mathematical expectation of a random variable \(a^2\).

b) Prove that \(|a|\geq \frac{1}{3}\).

On one island, one tribe has a custom – during the ritual dance, the leader throws up three thin straight rods of the same length, connected in the likeness of the letter capital \(\pi\), \(\Pi\). The adjacent rods are connected by a short thread and therefore freely rotate relative to each other. The bars fall on the sand, forming a random figure. If it turns out that there is self-intersection (the first and third bars cross), then the tribe in the coming year are waiting for crop failures and all sorts of trouble. If there is no self-intersection, then the year will be successful – satisfactory and happy. Find the probability that in 2019, the rods will predict luck.