What symmetries does a regular hexagon have, and how many?
Let \(X\) be a finite set, and let \(\mathcal{P}X\) be the power set of \(X\) - that is, the set of subsets of \(X\). For subsets \(A\) and \(B\) of \(X\), define \(A*B\) as the symmetric difference of \(A\) and \(B\) - that is, those elements that are in either \(A\) or \(B\), but not both. In formal set theory notation, this is \(A*B=(A\cup B)\backslash(A\cap B)\).
Prove that \((\mathcal{P}X,*)\) forms a group.
The lengths of three sides of a right-angled triangle are all integers.
Show that one of them is divisible by \(5\).
You have a row of coins and you can perform these three operations as many times as you like:
Remove three adjacent heads
Remove two adjacent tails
If there’s a head between two tails, then you can remove the head and swap the two tails to heads.
You apply these operations until you can’t make any more moves. Show that you will always get the same configuration at the end, no matter the order.
Let \(a\) be a positive integer, and let \(p\) be a prime number. Prove that \(a^p - a\) is a multiple of \(p\).
For any positive integer \(k\), the factorial \(k!\) is defined as a product of all integersbetween 1 and \(k\) inclusive: \(k! = k \times (k − 1) \times ... \times 1\). What’s the remainder when \(2025!+2024!+2023!+...+3!+2!+1!\) is divided by \(8\)?
Find all functions \(f\) from the real numbers to the real numbers such that \(xy=f(x)f(y)-f(x+y)\) for all real numbers x and y.
There are two imposters and seven crewmates on the rocket ‘Plus’. How many ways are there for the nine people to split into three groups of three, such that each group has at least two crewmates? The two imposters and seven crewmates are all distinguishable from each other, but we’re not concerned with the order of the three groups.
For example: \(\{I1,C1,C2\}\), \(\{I2,C3,C4\}\) and \(\{C5,C6,C7\}\) is the same as
\(\{C3,C4,I2\}\), \(\{C5,C6,C7\}\) and \(\{I1,C2,C1\}\) but different from
\(\{I2,C1,C2\}\), \(\{I1,C3,C4\}\) and \(\{C5,C6,C7\}\).
Let \(n\) be a natural number, and let \(d(n)\) be the number of factors of \(n\). For example, the factors of \(6\) are \(1,2,3,6\), so \(d(6)=4\). Find all \(n\) such that \(d(n)+d(n+1)=5\).