Find the remainder of dividing \(x^{100}-2x^{51}+1\) by \(x^2-1\). Try not to do a long calculation.
Katie and James take turns replacing the stars with any number of their choice in the following polynomial from left to right: \[x^4 +\star x^3+\star x^2+\star x+\star.\] Katie wins if once the game is over, the resulting polynomial has no integer roots (i.e: no roots which are whole numbers). Does James have a winning strategy?
Show that if a polynomial \(P(x)\) has an integer root (i.e: a root that is a whole number), then it can’t be that \(P(0)\) and \(P(1)\) are both odd.
Solve the equation \[\left(x^2-3x+3\right)^2-3\left(x^2-3x+3\right)+3=x\]
(USO 1974) Let \(a,b,c\) be three distinct integers, and let \(P(x)\) be a polynomial whose coefficients are all integers. Prove that it is not possible that the following three conditions hold at the same time: \(P(a)=b, P(b)=c,\) and \(P(c)=a\).
For a polynomial \(P(x)=ax^2+bx+c\), consider the following two kinds of transformations:
Swap coefficients \(a\) and \(c\). Hence the polynomial \(P(x)\) becomes \(cx^2+bx+a\) after this transformation.
For any number \(t\) of your choice, change the variable \(x\) into \(x+t\). For example, with the choice of \(t=1\), after this transformation, the polynomial \(x^2+x+1\) becomes \((x+1)^2+(x+1)+1=x^2+3x+3\).
Is it possible, using only a sequence of these two transformations, to change the polynomial \(x^2-x-2\) into the polynomial \(x^2-x-1\)?
Let \(x,x',y,y'\) be integers such that \(x+\sqrt{d}y=x'+\sqrt{d}y'\), where \(d\) is a number that is not a square. Show that \(x=x'\) and \(y=y'\).
Show that if \(u_1\) and \(u_2\) are solutions to Pell’s equation, then \(u_1u_2\) is also a solution to Pell’s equation. What can you conclude about the number of solutions, if there are any?
Find all integer solutions to \(x^2+y^2-1=4xy\).
In a bag we have \(99\) red balls and \(99\) blue balls. We take balls from the bag, two balls at a time:
If the two balls are of the same colour, then we put in a red ball to the bag.
If the two balls are of different colour, we return a blue ball to the bag.
Regardless, after each step, one ball is lost from the bag, so eventually there will be only one ball. What is the colour of this last ball?