Problems

Age
Difficulty
Found: 2018

Hannah has a calculator that allows you to multiply a number by 3, add 3 to the number or (4 if the number is divisible by 3 to make a whole number) divide by 3. How can the number 11 be made on this calculator from the number 1?

A game of ’Battleships’ has a fleet consisting of one \(1\times 4\) square, two \(1\times 3\) squares, three \(1\times 2\) squares, and four \(1\times 1\) squares. It is easy to distribute the fleet of ships on a \(10\times 10\) board, see the example below. What is the smallest square board on which this fleet can be placed? Note that by the rules of the game, no two ships can be placed on horizontally, vertically, or diagonally adjacent squares.
image

In the \(4 \times 4\) square, the cells in the left half are painted black, and the rest – in white. In one go, it is allowed to repaint all cells inside any rectangle in the opposite colour. How, in three goes, can one repaint the cells to get the board to look like a chessboard?

The product of two natural numbers, each of which is not divisible by 10, is equal to 1000. Find the sum of these two numbers.

10 children, including Billy, attended Billy’s birthday party. It turns out that any two children picked from those at the party share a grandfather. Prove that 7 of the children share a grandfather.

An old analogue clock speeds up by 9 minutes after 24 hours. If you went to sleep at 22:00 and set the correct time on the clock, then for what time should the alarm be set if you want it to go off at exactly 6:00? Explain your answer.

A class has 25 pupils. It is known that for any two girls in the class, the number of male friends they have in the class is different. What is the maximum number of girls that it is possible for there to be in the class?

In the king’s prison, there are five cells numbered from 1 to 5. In each cell, there is one prisoner. Kristen persuaded the king to conduct an experiment: on the wall of each cell she writes at one point a number and at midnight, each prisoner will go to the cell with the indicated number (if the number on the wall coincides with the cell number, the prisoner does not go anywhere). On the following night at midnight, the prisoners again must move from their cell to another cell according to the instructions on the wall, and they do this for five nights. If the location of prisoners in the cells for all six days (including the first) is never repeated, then Kristen will be given the title of Wisdom, and the prisoners will be released. Help Kristen write numbers in the cells.

A digital clock shows the time in hours and minutes (for example, 16:15). While practising his counting, Pinocchio finds the sum of all the numbers on this clock (for example, \(1+6+1+5=13\)). Find the time at which the sum of these numbers will be at its maximum.

Which numbers can stand in place of the letters in the equality \(AB \times C = DE\), if different letters denote different numbers and from left to right the numbers are written in ascending order?