Problems

Age
Difficulty
Found: 2018

Numbers from 1 to 20 are written in a row. Players take turns placing pluses and minuses between these numbers. After all of the gaps are filled, the result is calculated. If it is even, then the first player wins, if it is odd, then the second player wins. Who won?

Two players take turns to put rooks on a chessboard so that the rooks cannot capture each other. The player who cannot make a move loses.

On a board there are written 10 units and 10 deuces. During a game, one is allowed to erase any two numbers and, if they are the same, write a deuce, and if they are different then they can write a one. If the last digit left on the board is a unit, then the first player won, if it is a deuce then the second player wins.

The numbers 25 and 36 are written on a blackboard. Consider the game with two players where: in one turn, a player is allowed to write another natural number on the board. This number must be the difference between any two of the numbers already written, such that this number does not already appear on the blackboard. The loser is the player who cannot make a move.

Consider a chessboard of size (number of rows \(\times\) number of columns): a) \(9\times 10\); b) \(10\times 12\); c) \(9\times 11\). Two people are playing a game where: in one turn a player is allowed to cross out any row or column as long as there it contains at least one square that is not crossed out. The loser is the player who cannot make a move. Which player will win?

Two players in turn put coins on a round table, in such a way that they do not overlap. The player who can not make a move loses.

Two people take turns placing bishops on a chessboard such that the bishops cannot attack each other. Here, the colour of the bishops does not matter. (Note: bishops move and attack diagonally.) Which player wins the game, if the right strategy is used?

There are two piles of rocks, each with 7 rocks. Consider the game with two players where: in one turn you can take any amount of rocks, but only from one pile. The loser is the one who has no rocks left to take.

Two people take turns placing knights on a chessboard such that the knights cannot attack each other. The loser is the player who cannot make a move. Which player wins the game, if the right strategy is used?

Two people take turns placing kings on squares of a \(9 \times 9\) chessboard such that the kings cannot attack each other. The loser is the player who cannot make a move. Which player wins the game, if the right strategy is used?