Problems

Age
Difficulty
Found: 1604

Ali Baba followed by 40 robbers lined up on the crossing across the Bosporus Strait. There is only one boat and in it there can be either two or three people (there cannot be one person in the boat). Among those in the boat there should not be people who are not friends with each other. Will all of them be able to cross, if every two people standing next to each other in the queue are friends, while Ali Baba is also friends with the robber standing behind the person next to him?

A group of several friends was in correspondence in such a way that each letter was received by everyone except for the sender. Each person wrote the same number of letters, as a result of which all together the friends received 440 letters. How many people could be in this group of friends?

Author: A.V. Shapovalov

To the cabin of the cable car leading up to the mountain, four people arrived who weigh 50, 60, 70 and 90 kg. A supervisor does not exist, but the cable car travels back and forth in automatic mode only with a load from 100 to 250 kg (in particular, it does not go anywhere when the cable car is empty), provided that passengers can be seated on two benches so that the weights on the benches differ by no more than 25 kg. How can they all climb the mountain?

Author: N. Medved

Peter and Victoria are playing on a board measuring \(7 \times 7\). They take turns putting the numbers from 1 to 7 in the board cells so that the same number does not appear in one line nor in one column. Peter goes first. The player who loses is the one who cannot make a move. Who of them can win, no matter how the opponent plays?

In the isosceles triangle \(ABC\), the angle \(B\) is equal to \(30^{\circ}\), and \(AB = BC = 6\). The height \(CD\) of the triangle \(ABC\) and the height \(DE\) of the triangle \(BDC\) are drawn. Find the length \(BE\).

Authors: B.R. Frenkin, T.V. Kazitcina

On the tree sat 100 parrots of three kinds: green, yellow, multi-coloured. A crow flew past and croaked: “Among you, there are more green parrots than multi-coloured ones!” – “Yes!” – agreed 50 parrots, and the others shouted “No!”. Glad to the dialogue, the crow again croaked: “Among you, there are more multi-coloured parrots than yellow ones!” Again, half of the parrots shouted “Yes!”, and the rest – “No!”. The green parrots both told the truth, the yellow ones lied both times, and each of the multi-coloured ones lied once, and once told the truth. Could there be more yellow than green parrots?

Author: E.V. Bakaev

From the beginning of the academic year, Andrew wrote down his marks for mathematics. When he received another evaluation (2, 3, 4 or 5), he called it unexpected, if before that time this mark was met less often than each of the other possible marks. (For example, if he had received the following marks: 3, 4, 2, 5, 5, 5, 2, 3, 4, 3 from the beginning of the year, the first five and the second four would have been unexpected). For the whole academic year, Andrew received 40 marks - 10 fives, fours, threes and twos (it is not known in which order). Is it possible to say exactly how many marks were unexpected?

In a line 40 signs are written out: 20 crosses and 20 zeros. In one move, you can swap any two adjacent signs. What is the least number of moves in which it is guaranteed that you can ensure that some 20 consecutive signs are crosses?

The numerical function \(f\) is such that for any \(x\) and \(y\) the equality \(f (x + y) = f (x) + f (y) + 80xy\) holds. Find \(f(1)\) if \(f(0.25) = 2\).