Problems

Age
Difficulty
Found: 1604

Author: E.V. Bakaev

After a hockey match Anthony said that he scored 3 goals, and Ilya only one. Ilya said that he scored 4 goals, and Serge scored 5 goals. Serge said that he scored 6 goals, and Anthony only two. Could it be that the three of them scored 10 goals, if it is known that each of them once told the truth, and once lied?

Find all of the solutions of the puzzle: \(ARKA + RKA + KA + A = 2014\). (Different letters correspond to different numbers, and the same letters correspond to the same numbers.)

Valentina added a number (not equal to 0) taken to the power of four and the same number to the power two and reported the result to Peter. Can Peter determine the unique number that Valentina chose?

There are scales and 100 coins, among which several (more than 0 but less than 99) are fake. All of the counterfeit coins weigh the same and all of the real ones also weigh the same, while the counterfeit coin is lighter than the real one. You can do weighings on the scales by paying with one of the coins (whether real or fake) before weighing. Prove that it is possible with a guarantee to find a real coin.

Author: I.S. Rubanov

On the table, there are 7 cards with numbers from 0 to 6. Two take turns in taking one card. The winner is the one is the first person who can, from his cards, make up a natural number that is divisible by 17. Who will win in a regular game the person who goes first or second?

Anna is waiting for the bus. Which event is most likely?

\(A =\{\)Anna waits for the bus for at least a minute\(\}\),

\(B = \{\)Anna waits for the bus for at least two minutes\(\}\),

\(C = \{\)Anna waits for the bus for at least five minutes\(\}\).

Henry wrote a note on a piece of paper, folded it two times, and wrote “FOR MOM” on the top. Then he unfolded the note, added something to it, randomly folded the note along the old folding lines (not necessarily in the same way as he did it before) and left it on the table with random side up. Find the probability that “FOR MOM” is still on the top.

In the cabinet of Anchuria there are 100 ministers. Among them there are honest and dishonest ministers. It is known that out of any ten ministers, at least one minister is dishonest. What is the smallest number of dishonest ministers there could be in the cabinet?

A square is divided into triangles (see the figure). How many ways are there to paint exactly one third of the square? Small triangles cannot be painted partially.

The pupils of class 5A had a total of 2015 pencils. One of them lost a box with five pencils, and instead bought a box with 50 pencils. How many pencils do the pupils of class 5A now have?