Author: Shapovalov A.V.
Let \(A\) and \(B\) be two rectangles. From rectangles equal to \(A\), a rectangle similar to \(B\) was created.
Prove that from rectangles equal to \(B\), you can create a rectangle similar to \(A\).
Author: A. Glazyrin
In the coordinate space, all planes with the equations \(x \pm y \pm z = n\) (for all integers \(n\)) were carried out. They divided the space into tetrahedra and octahedra. Suppose that the point \((x_0, y_0, z_0)\) with rational coordinates does not lie in any plane. Prove that there is a positive integer \(k\) such that the point \((kx_0, ky_0, kz_0)\) lies strictly inside some octahedron from the partition.
There is an elastic band and glass beads: four identical red ones, two identical blue ones and two identical green ones. It is necessary to string all eight beads on the elastic band in order to get a bracelet. How many different bracelets can be made so that beads of the same colour are not next to each other? (Assume that there is no buckle, and the knot on the elastic is invisible).
To test a new program, a computer selects a random real number \(A\) from the interval \([1, 2]\) and makes the program solve the equation \(3x + A = 0\). Find the probability that the root of this equation is less than \(0.4\).
Authors: B. Vysokanov, N. Medved, V. Bragin
The teacher grades tests on a scale from 0 to 100. The school can change the upper bound of the scale to any other natural number, recalculating the estimates proportionally and rounding up to integers. A non-integer number, when rounded, changes to the nearest integer; if the fractional part is equal to 0.5, the direction of rounding can be either up or down and it can be different for each question. (For example, an estimate of 37 on a scale of 100 after recalculation in the scale of 40 will go to \(37 \cdot 40/100 = 14.8\) and will be rounded to 15).
The students of Peter and Valerie got marks, which are not 0 and 100. Prove that the school can do several conversions so that Peter’s mark becomes b and Valerie’s mark becomes a (both marks are recalculated simultaneously).
It is known that \(a = x+y + \sqrt{xy}\), \(b = y + z + \sqrt{yz}\), \(c = x + z + \sqrt{xz}\). where \(x > 0\), \(y > 0\), \(z > 0\). Prove that \(a + b + \sqrt{ab} > c\).
Author: A.A. Egorov
Calculate the square root of the number \(0.111 \dots 111\) (100 ones) to within a) 100; b) 101; c)* 200 decimal places.
A quadrilateral is given; \(A\), \(B\), \(C\), \(D\) are the successive midpoints of its sides, \(P\) and \(Q\) are the midpoints of its diagonals. Prove that the triangle \(BCP\) is equal to the triangle \(ADQ\).
How can you arrange the numbers \(5/177\), \(51/19\) and \(95/9\) and the arithmetical operators “\(+\)”, “\(-\)”, “\(\times\)” and “\(\div\)” such that the result is equal to 2006? Note: you can use the given numbers and operators more than once.
Find the locus of points whose coordinates \((x, y)\) satisfy the relation \(\sin(x + y) = 0\).