Peter bought an automatic machine at the store, which for 5 pence multiplies any number entered into it by 3, and for 2 pence adds 4 to any number. Peter wants, starting with a unit that can be entered free of charge to get the number 1981 on the machine number whilst spending the smallest amount of money. How much will the calculations cost him? What happens if he wants to get the number 1982?
In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?
Izzy wrote a correct equality on the board: \(35 + 10 - 41 = 42 + 12 - 50\), and then subtracted 4 from both parts: \(35 + 10 - 45 = 42 + 12 - 54\). She noticed that on the left hand side of the equation all of the numbers are divisible by 5, and on the right hand side by 6. Then she took 5 outside of the brackets on the left hand side and 6 on the right hand side and got \(5(7 + 2 - 9)4 = 6(7 + 2 - 9)\). Having simplified both sides by a common multiplier, Izzy found that \(5 = 6\). Where did she go wrong?
A carpet of size 4 m by 4 m has had 15 holes made in it by a moth. Is it always possible to cut out a 1 m \(\times\) 1 m area of carpet that doesn’t contain any holes? The holes are considered to be points.
Prove that in any group of 2001 whole numbers there will be two whose difference is divisible by 2000.
The natural number \(a\) was increased by 1, and its square increased by 1001. What is \(a\)?
In a basket, there are 30 red and green apples. Among any 12 apples there is at least one red one, and among any 20 apples there is at least one green one. How many red apples and how many green apples are there in the basket?
In the numbers of MEXAILO and LOMONOSOV, each letter denotes a number (different letters correspond to different numbers). It is known that the products of the numbers of these two words are equal. Can both numbers be odd?
Does there exist a flat quadrilateral in which the tangents of all interior angles are equal?
On an island there are 1,234 residents, each of whom is either a knight (who always tells the truth) or a liar (who always lies). One day, all of the inhabitants of the island were broken up into pairs, and each one said: “He is a knight!" or “He is a liar!" about his partner. Could it eventually turn out to be that the number of “He is a knight!" and “He is a liar!" phrases is the same?