Problems

Age
Difficulty
Found: 1506

The natural number \(a\) was increased by 1, and its square increased by 1001. What is \(a\)?

In a basket, there are 30 red and green apples. Among any 12 apples there is at least one red one, and among any 20 apples there is at least one green one. How many red apples and how many green apples are there in the basket?

In the numbers of MEXAILO and LOMONOSOV, each letter denotes a number (different letters correspond to different numbers). It is known that the products of the numbers of these two words are equal. Can both numbers be odd?

On an island there are 1,234 residents, each of whom is either a knight (who always tells the truth) or a liar (who always lies). One day, all of the inhabitants of the island were broken up into pairs, and each one said: “He is a knight!" or “He is a liar!" about his partner. Could it eventually turn out to be that the number of “He is a knight!" and “He is a liar!" phrases is the same?

Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?

A game with 25 coins. In a row there are 25 coins. For a turn it is allowed to take one or two neighbouring coins. The player who has nothing to take loses.

In the first pile there are 100 sweets and in the second there are 200. Consider the game with two players where: in one turn a player can take any amount of sweets from one of the piles. The winner is the one who takes the last sweet. Which player would win by using the correct strategy?

Let \(M\) be the point of intersection of the medians of the triangle \(ABC\), and \(O\) an arbitrary point on a plane. Prove that \[OM^2 = 1/3 (OA^2 + OB^2 + OC^2) - 1/9 (AB^2 + BC^2 + AC^2).\]