A cat tries to catch a mouse in labyrinths A, B, and C. The cat walks first, beginning with the node marked with the letter “K”. Then the mouse (from the node “M”) moves, then again the cat moves, etc. From any node the cat and mouse go to any adjacent node. If at some point the cat and mouse are in the same node, then the cat eats the mouse.
Can the cat catch the mouse in each of the cases A, B, C?
Two play a game on a chessboard \(8 \times 8\). The player who makes the first move puts a knight on the board. Then they take turns moving it (according to the usual rules), whilst you can not put the knight on a cell which he already visited. The loser is one who has nowhere to go. Who wins with the right strategy – the first player or his partner?
a) The vertices (corners) in a regular polygon with 10 sides are colored black and white in an alternating fashion (i.e. one vertex is black, the next is white, etc). Two people play the following game. Each player in turn draws a line connecting two vertices of the same color. These lines must not have common vertices (i.e. must not begin or end on the same dot as another line) with the lines already drawn. The winner of the game is the player who made the final move. Which player, the first or the second, would win if the right strategy is used?
b) The same problem, but for a regular polygon with 12 sides.
Prove that in any group of 7 natural numbers – not necessarily consecutive – it is possible to choose three numbers such that their sum is divisible by 3.
What figure should I put in place of the “?” in the number \(888 \dots 88\,?\,99 \dots 999\) (eights and nines are written 50 times each) so that it is divisible by 7?
Solve the equation \(x + \frac{1}{(y + 1/z)}= 10/7\) in natural numbers.
10 friends sent one another greetings cards; each sent 5 cards. Prove that there will be two friends who sent cards to one another.
Sage thought of the sum of some three natural numbers, and the Patricia thought about their product.
“If I knew,” said Sage, “that your number is greater than mine, then I would immediately name the three numbers that are needed.”
“My number is smaller than yours,” Patricia answered, “and the numbers you want are ..., ... and ....”
What numbers did Patricia name?
Initially, a natural number \(A\) is written on a board. You are allowed to add to it one of its divisors, distinct from itself and one. With the resulting number you are permitted to perform a similar operation, and so on.
Prove that from the number \(A = 4\) one can, with the help of such operations, come to any given in advance composite number.
A student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number. The result was three times greater.
Find these numbers.