Problems

Age
Difficulty
Found: 1604

There is a chocolate bar with five longitudinal and eight transverse grooves, along which it can be broken (in total into \(9 * 6 = 54\) squares). Two players take part, in turns. A player in his turn breaks off the chocolate bar a strip of width 1 and eats it. Another player who plays in his turn does the same with the part that is left, etc. The one who breaks a strip of width 2 into two strips of width 1 eats one of them, and the other is eaten by his partner. Prove that the first player can act in such a way that he will get at least 6 more chocolate squares than the second player.

During the ball every young man danced the waltz with a girl, who was either more beautiful than the one he danced with during the previous dance, or more intelligent, but most of the men (at least 80%) – with a girl who was at the same time more beautiful and more intelligent. Could this happen? (There was an equal number of boys and girls at the ball.)

A \(1 \times 10\) strip is divided into unit squares. The numbers \(1, 2, \dots , 10\) are written into squares. First, the number 1 is written in one square, then the number 2 is written into one of the neighboring squares, then the number 3 is written into one of the neighboring squares of those already occupied, and so on (the choice of the first square is made arbitrarily and the choice of the neighbor at each step). In how many ways can this be done?

On a plane there is a square, and invisible ink is dotted at a point \(P\). A person with special glasses can see the spot. If we draw a straight line, then the person will answer the question of on which side of the line does \(P\) lie (if \(P\) lies on the line, then he says that \(P\) lies on the line).

What is the smallest number of such questions you need to ask to find out if the point \(P\) is inside the square?

Initially, on each cell of a \(1 \times n\) board a checker is placed. The first move allows you to move any checker onto an adjacent cell (one of the two, if the checker is not on the edge), so that a column of two pieces is formed. Then one can move each column in any direction by as many cells as there are checkers in it (within the board); if the column is on a non-empty cell, it is placed on a column standing there and unites with it. Prove that in \(n - 1\) moves you can collect all of the checkers on one square.

A cube with side length of 20 is divided into 8000 unit cubes, and on each cube a number is written. It is known that in each column of 20 cubes parallel to the edge of the cube, the sum of the numbers is equal to 1 (the columns in all three directions are considered). On some cubes a number 10 is written. Through this cube there are three layers of \(1 \times 20 \times 20\) cubes, parallel to the faces of the cube. Find the sum of all the numbers outside of these layers.

Two people are playing. The first player writes out numbers from left to right, randomly alternating between 0 and 1, until there are 2021 numbers in total. Each time after the first one writes out the next digit, the second switches two numbers from the already written row (when only one digit is written, the second misses its move). Is the second player always able to ensure that, after his last move, the arrangement of the numbers is symmetrical relative to the middle number?

In Conrad’s collection there are four royal gold five-pound coins. Conrad was told that some two of them were fake. Conrad wants to check (prove or disprove) that among the coins there are exactly two fake ones. Will he be able to do this with the help of two weighings on weighing scales without weights? (Counterfeit coins are the same in weight, real ones are also the same in weight, but false ones are lighter than real ones.)

Janine and Zahara each thought of a natural number and said them to Alex. Alex wrote the sum of the thought of numbers onto one sheet of paper, and on the other – their product, after which one of the sheets was hidden, and the other (on it was written the number of 2002) was shown to Janine and Zahara. Seeing this number, Janine said that she did not know what number Zahara had thought of. Hearing this, Zahara said that she did not know what number Janine had thought of. What was the number which Zahara had thought of?

On a table there are 2022 cards with the numbers 1, 2, 3, ..., 2022. Two players take one card in turn. After all the cards are taken, the winner is the one who has a greater last digit of the sum of the numbers on the cards taken. Find out which of the players can always win regardless of the opponent’s strategy, and also explain how he should go about playing.