Which of the two following numbers is larger: \(31^{11}\) or \(17^{14}\)?
Zippity the robot speaks a language of \(n\) words which can be written with \(0\)s and \(1\)s. In this language, no word appears as the first several digits of another word. For example: if “\(1001\)” is a word, then “\(100101\)” can’t be a word. Show that if \(\ell_1,\cdots, \ell_n\) are the lengths of each word (i.e: the number of digits), then \[\frac{1}{2^{\ell_1}}+\frac{1}{2^{\ell_2}}+\cdots + \frac{1}{2^{\ell_n}}\leq 1.\]
Prove that under the homothety transformation, a circle is transferred into a circle. Consider all possible cases of \(k\): \(k<0, 0<k \leq 1, 1\leq k\).
Two circles with centres \(A\) and \(C\) are tangent at the point \(B\). The segment \(DE\) passes through the point \(B\). Prove that the tangent lines passing through the points \(D\) and \(E\) are parallel.
