In a certain realm there are magicians, sorcerers and wizards. The following is known about them: firstly, not all magicians are sorcerers, and secondly, if the wizard is not a sorcerer, then he is not a magician. Is it true that not all magicians are wizards?
A traveller on the planet of liars and truth tellers met four people and asked them: “Who are you?”. They received the following answers:
1st: “We are all liars.”
2nd: “Among us is exactly one liar.”
3rd: “Among us there are two liars.”
4th: “I have never lied and I’m not lying”.
The traveller quickly realised who the fourth resident was. How did they do it?
In the lower left corner of an 8 by 8 chessboard is a chip. Two in turn move it one cell up, right or right-up diagonally. The one who puts the chip in the upper right corner wins. Who will win in a regular game?
a) There are 10 coins. It is known that one of them is fake (by weight, it is heavier than the real ones). How can you determine the counterfeit coin with three weighings on scales without weights?
b) How can you determine the counterfeit coin with three weighings, if there are 27 coins?
During the year, the price for a strudel were twice raised by 50%, and before the New Year they were sold at half price. How much does one strudel cost now, if at the beginning of the year it cost 80 pence?
Harry and Matt came down from a mountain. Harry walked on foot, and Matt went skiing, which was seven times faster than Harry. Halfway down, Matt fell, broke his skis and his leg, and hence travelled twice as slow as Harry. Who will descend first from the mountain?
A country is called a Fiver if, in it, each city is connected by airlines with exactly with five other cities (there are no international flights).
a) Draw a scheme of airlines for a country that is made up of 10 cities.
b) How many airlines are there in a country of 50 cities?
c) Can there be a Fiver country, in which there are exactly 46 airlines?
Does the number of 1999 occur in the Pascal triangle?
Find a natural number greater than one that occurs in the Pascal triangle a) more than three times; b) more than four times.
How many times greater is the sum of the numbers in the hundred and first line of the Pascal triangle than the sum of the numbers in the hundredth line?