Problems

Age
Difficulty
Found: 1604

The angles of a triangle are in the ratio \(2: 3: 4\). Find the ratio of the outer angles of the triangle.

One angle of a triangle is equal to the sum of its other two angles. Prove that the triangle is right-angled.

Prove that the segment connecting the vertex of an isosceles triangle to a point lying on the base is no greater than the lateral side of the triangle.

One of the four angles formed when two straight lines intersect is \(41^{\circ}\). What are the other three angles equal to?

In the acute-angled triangle \(ABC\), the heights \(AA_1\) and \(BB_1\) are drawn. Prove that \(A_1C \times BC = B_1C \times AC\).

Let \(AA_1\) and \(BB_1\) be the heights of the triangle \(ABC\). Prove that the triangles \(A_1B_1C\) and \(ABC\) are similar.

The vertex \(A\) of the acute-angled triangle \(ABC\) is connected by a segment with the center \(O\) of the circumscribed circle. The height \(AH\) is drawn from the vertex \(A\). Prove that \(\angle BAH = \angle OAC\).

The vertex \(A\) of the acute-angled triangle \(ABC\) is connected by a segment with the center \(O\) of the circumscribed circle. The height \(AH\) is drawn from the vertex \(A\). Prove that \(\angle BAH = \angle OAC\).

From an arbitrary point \(M\) lying within a given angle with vertex \(A\), the perpendiculars \(MP\) and \(MQ\) are dropped to the sides of the angle. From point \(A\), the perpendicular \(AK\) is dropped to the segment \(PQ\). Prove that \(\angle PAK = \angle MAQ\).