Problems

Age
Difficulty
Found: 1604

On a line segment of length 1, \(n\) points are given. Prove that the sum of the distances from some point out of the ones on the segment to these points is no less than \(n / 2\).

Prove that \(\angle ABC < \angle BAC\) if and only if \(AC < BC\), that is, the larger side lies opposite the larger angle of the triangle, and opposite the larger side lies the larger angle.

The point \(D\) lies on the base \(AC\) of the isosceles triangle \(ABC\). Prove that the radii of the circumscribed circles of the triangles \(ABD\) and \(CBD\) are equal.

Prove that the point \(X\) lies on the line \(AB\) if and only if \(\overrightarrow{OX} = t \overrightarrow{OA} + (1 - t) \overrightarrow{OB}\) for some \(t\) and any point \(O\).