Let \(a,b,c >0\) be positive real numbers. Prove that \[(1+a)(1+b)(1+c)\geq 8\sqrt{abc}.\]
For a natural number \(n\) prove that \(n! \leq (\frac{n+1}{2})^n\), where \(n!\) is the factorial \(1\times 2\times 3\times ... \times n\).
Prove the Cauchy-Schwartz inequality: for a natural number \(n\) and real numbers \(a_1\), \(a_2\), ..., \(a_n\) and \(b_1\), \(b_2\), ..., \(b_n\) we have \[(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq (a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2).\]
Calculate the following squares in the shortest possible way (without
a calculator or any other device):
a) \(1001^2\) b) \(9998^2\) c) \(20003^2\) d) \(497^2\)
Real numbers \(x,y\) are such that \(x^2 +x \le y\). Show that \(y^2 +y \ge x\).
Let \(\triangle ABC\) be a triangle and \(D\) be a point on the edge \(BC\) so that the segment \(AD\) bisects the angle \(\angle BAC\). Show that \(\frac{|AB|}{|BD|}=\frac{|AC|}{|CD|}\).
For non-negative real numbers \(a,b,c\) prove that \[a^3+b^3+c^3 \geq \frac{(a+b+c)(a^2+b^2+c^2)}{3}\geq a^2b+b^2c+c^2a.\]
Prove Nesbitt’s inequality, which states that for positive real numbers \(a,b,c\) we have \[\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}.\]
Show that if \(1+2+\dots+n = \frac{n(n+1)}{2}\), then \(1+2+\dots+(n+1) = \frac{(n+1)((n+1)+1)}{2}\).
Show that \(1+2+\dots+n = \frac{n(n+1)}{2}\) for every natural number \(n\).