Solve the equation \((x + 1)^3 = x^3\).
We call a number \(x\) rational if it can be represented as \(x=\frac{p}{q}\) for coprime integers \(p\) and \(q\). Otherwise we call the number irrational.
Non-zero numbers \(a\) and \(b\) satisfy the equality \(a^2b^2 (a^2b^2 + 4) = 2(a^6 + b^6)\). Prove that at least one of them is irrational.
Can the cells of a \(5 \times 5\) board be painted in 4 colours so that the cells located at the intersection of any two rows and any two columns are painted in at least three colours?
The sum of the positive numbers \(a, b, c\) is \(\pi / 2\). Prove that \(\cos a + \cos b + \cos c > \sin a + \sin b + \sin c\).
Five teams participated in a football tournament. Each team had to play exactly one match with each of the other teams. Due to financial difficulties, the organisers cancelled some of the games. As a result, it turned out that all teams scored a different number of points and no team scored zero points. What is the smallest number of games that could be played in the tournament, if three points were awarded for a victory, one for a draw and zero for a defeat?
Natural numbers from 1 to 200 are divided into 50 sets. Prove that in one of the sets there are three numbers that are the lengths of the sides of a triangle.
Prove that for each \(x\) such that \(\sin x \neq 0\), there is a positive integer \(n\) such that \(|\sin nx| \geq \sqrt{3}/2\).
For what natural numbers \(n\) are there positive rational but not whole numbers \(a\) and \(b\), such that both \(a + b\) and \(a^n + b^n\) are integers?
Inside a square with side 1 there are several circles, the sum of the radii of which is 0.51. Prove that there is a line that is parallel to one side of the square and that intersects at least 2 circles.
The base of the pyramid is a square. The height of the pyramid crosses the diagonal of the base. Find the largest volume of such a pyramid if the perimeter of the diagonal section containing the height of the pyramid is 5.