Problems

Age
Difficulty
Found: 1123

A row of 4 coins lies on the table. Some of the coins are real and some of them are fake (the ones which weigh less than the real ones). It is known that any real coin lies to the left of any false coin. How can you determine whether each of the coins on the table is real or fake, by weighing once using a balance scale?

What is the largest number of counters that can be put on the cells of a chessboard so that on each horizontal, vertical and diagonal (not only on the main ones) there is an even number of counters?

Seven triangular pyramids stand on the table. For any three of them, there is a horizontal plane that intersects them along triangles of equal area. Prove that there is a plane intersecting all seven pyramids along triangles of equal area.

All of the points with whole number co-ordinates in a plane are plotted in one of three colours; all three colours are present. Prove that there will always be possible to form a right-angle triangle from these points so that its vertices are of three different colours.

A regular hexagon with sides of length \(5\) is divided by straight lines, that are parallel to its sides, to form regular triangles with sides of length 1. We call the vertices of all such triangles nodes. It is known that more than half of the nodes are marked. Prove that there are five marked nodes lying on one circle.

The polynomial \(P (x)\) of degree \(n\) has \(n\) distinct real roots.

What is the largest number of its coefficients that can be equal to zero?