a) What is the maximum number of squares on an \(8\times 8\) grid that can be shaded in with a black pen such that each ‘L’ shaped group of 3 squares has at least one unshaded square.
b) What is the maximum number of squares on an \(8\times 8\) grid that can be shaded in with a black pen, such that each ‘L’ shaped group of 3 squares has at least one shaded square.
10 school students took part in a Mathematical Olympiad and solved 35 problems in total. It is known that there were students who solved exactly one problem, students who solved exactly two problems, and students who solved exactly three problems. Prove that there is a student who solved exactly 5 problems.
Prove that it is not possible to completely cover an equilateral triangle with two smaller equilateral triangles.
51 points were thrown into a square of side 1 m. Prove that it is possible to cover some set of 3 points with a square of side 20 cm.
The total age of a group of 7 people is 332 years. Prove that it is possible to choose three members of this group so that the sum of their ages is no less than 142 years.
Prove that amongst numbers written only using the number 1, i.e.: 1, 11, 111, etc, there is a number than is divisible by 1987.
Prove that there is a power of 3 that ends in 001.
The numbers \(1, 2, \dots , 9\) are divided into three groups. Prove that the product of the numbers in one of the groups will always be no less than 72.
Some whole numbers are placed into a \(10\times 10\) table, so that the difference between any two neighbouring, horizontally or vertically adjacent, squares is no greater than 5. Prove that there will always be two identical numbers in the table.
Prove that in any group of 6 people there are either three pairs of people who know one another, or three pairs of people who do not know one another.