Problems

Age
Difficulty
Found: 1489

Prove that there is a vertex in the tree from which exactly one edge emerges (such a vertex is called a hanging top).

At a conference there are 50 scientists, each of whom knows at least 25 other scientists at the conference. Prove that is possible to seat four of them at a round table so that everyone is sitting next to people they know.

Each of the edges of a complete graph consisting of 6 vertices is coloured in one of two colours. Prove that there are three vertices, such that all the edges connecting them are the same colour.

Prove that the number of US states with an odd number of neighbours is even.

a) What is the minimum number of pieces of wire needed in order to weld a cube’s frame?

b) What is the maximum length of a piece of wire that can be cut from this frame? (The length of the edge of the cube is 1 cm).

Recall that a natural number \(x\) is called prime if \(x\) has no divisors except \(1\) and itself. Solve the equation with prime numbers \(pqr = 7(p + q + r)\).

In a room there are some chairs with 4 legs and some stools with 3 legs. When each chair and stool has one person sitting on it, then in the room there are a total of 39 legs. How many chairs and stools are there in the room?

a) In a group of 4 people, who speak different languages, any three of them can communicate with one another; perhaps by one translating for two others. Prove that it is always possible to split them into pairs so that the two members of every pair have a common language.

b) The same, but for a group of 100 people.

c) The same, but for a group of 102 people.