Prove that in any group of friends there will be two people who have the same number of friends.
Solve the equation \(2x^x = \sqrt {2}\) for positive numbers.
Upon the installation of a keypad lock, each of the 26 letters located on the lock’s keypad is assigned an arbitrary natural number known only to the owner of the lock. Different letters do not necessarily have different numbers assigned to them. After a combination of different letters, where each letter is typed once at most, is entered into the lock a summation is carried out of the corresponding numbers to the letters typed in. The lock opens only if the result of the summation is divisible by 26. Prove that for any set of numbers assigned to the 26 letters, there exists a combination that will open the lock.
In an \(n\) by \(n\) grid, \(2n\) of the squares are marked. Prove that there will always be a parallelogram whose vertices are the centres of four of the squares somewhere in the grid.
A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?
Two players play the following game. They take turns. One names two numbers that are at the ends of a line segment. The next then names two other numbers, which are at the ends of a segment nested in the previous one. The game goes on indefinitely. The first aims to have at least one rational number within the intersection of all of these segments, and the second aims to prevent such occurring. Who wins in this game?
The positive irrational numbers \(a\) and \(b\) are such that \(1/a + 1/b = 1\). Prove that among the numbers \(\lfloor ma\rfloor , \lfloor nb\rfloor\) each natural number occurs exactly once.
Three friends decide, by a coin toss, who goes to get the juice. They have one coin. How do they arrange coin tosses so that all of them have equal chances to not have to go and get the juice?
There are 8 glasses of water on the table. You are allowed to take any two of the glasses and make them have equal volumes of water (by pouring some water from one glass into the other). Prove that, by using such operations, you can eventually get all the glasses to contain equal volumes of water.
26 numbers are chosen from the numbers 1, 2, 3, ..., 49, 50. Will there always be two numbers chosen whose difference is 1?