Problems

Age
Difficulty
Found: 1467

A broken calculator carries out only one operation “asterisk”: \(a*b = 1 - a/b\). Prove that using this calculator it is possible to carry out all four arithmetic operations (addition, subtraction, multiplication, division).

A convex polygon on a plane contains no fewer than \(m^2+1\) points with whole number co-ordinates. Prove that within the polygon there are \(m+1\) points with whole number co-ordinates that lie on a single straight line.

All the points on the edge of a circle are coloured in two different colours at random. Prove that there will be an equilateral triangle with vertices of the same colour inside the circle – the vertices are points on the circumference of the circle.

Sam and Lena have several chocolates, each weighing not more than 100 grams. No matter how they share these chocolates, one of them will have a total weight of chocolate that does not exceed 100 grams. What is the maximum total weight of all of the chocolates?

Ten straight lines are drawn through a point on a plane cutting the plane into angles.
Prove that at least one of these angles is less than \(20^{\circ}\).

A rectangular billiard with sides 1 and \(\sqrt {2}\) is given. From its angle at an angle of \(45 ^\circ\) to the side a ball is released. Will it ever get into one of the pockets? (The pockets are in the corners of the billiard table).

The bisector of the outer corner at the vertex \(C\) of the triangle \(ABC\) intersects the circumscribed circle at the point \(D\). Prove that \(AD = BD\).

Let \(a\) and \(b\) be the lengths of the sides of a right-angled triangle and \(c\) the length of its hypotenuse. Prove that:

a) The radius of the inscribed circle of the triangle is \((a + b - c)/2\);

b) The radius of the circle that is tangent to the hypotenuse and the extensions of the sides of the triangle, is equal to \((a + b + c)/2\).

Prove that the following inequalities hold for the Brockard angle \(\varphi\):

a) \(\varphi ^{3} \le (\alpha - \varphi) (\beta - \varphi) (\gamma - \varphi)\) ;

b) \(8 \varphi^{3} \le \alpha \beta \gamma\) (the Jiff inequality).