In a group of seven boys, everyone has at least three brothers who are in that group. Prove that all seven are brothers.
Aladdin visited all of the points on the equator, moving to the east, then to the west, and sometimes instantly moving to the diametrically opposite point on Earth. Prove that there was a period of time during which the difference in distances traversed by Aladdin to the east and to the west was not less than half the length of the equator.
Prove that there is a number of the form
a) \(1989 \dots 19890 \dots 0\) (the number 1989 is repeated several times, and then there are a few zeros), which is divisible by 1988;
b) \(1988 \dots 1988\), which is divisible by 1989.
The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \sin x + a & = bx \\ \cos x &= b \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.
The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \cos x &= ax + b \\ \sin x + a &= 0 \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.
Determine all natural numbers \(m\) and \(n\) such as \(m! + 12 = n^2\).
Prove that amongst the numbers of the form \[19991999\dots 19990\dots 0\] – that is 1999 a number of times, followed by a number of 0s – there will be at least one divisible by 2001.
There are three piles of rocks: in the first pile there are 10 rocks, 15 in the second pile and 20 in the third pile. In this game (with two players), in one turn a player is allowed to divide one of the piles into two smaller piles. The loser is the one who cannot make a move. Which player would be the winner?
In the dense dark forest ten sources of dead water are erupting from the ground: named from #1 to #10. Of the first nine sources, dead water can be taken by everyone, but the source #10 is in the cave of the dark wizard, from which no one, except for the dark wizard himself, can collect water. The taste and color of dead water is no different from ordinary water, however, if a person drinks from one of the sources, then he will die. Only one thing can save him: if he then drinks poison from a source whose number is greater. For example, if he drinks from the seventh source, then he must necessarily drink poison from the #8, #9 or #10 sources. If he doesn’t drink poison from the seventh source, but does from the ninth, only the poison from the source #10 will save him. And if he originally drinks the tenth poison, then nothing will help him now. Robin Hood summoned the dark wizard to a duel. The terms of the duel were as follows: each brings with him a mug of liquid and gives it to his opponent. The dark wizard was delighted: “Hurray, I will give him poison #10, and Robin Hood can not be saved! And I’ll drink the poison, which Robin Hood brings to me, then ill drink the #10 poison and that will save me!” On the appointed day, both opponents met at the agreed place. They honestly exchanged mugs and drank what was in them. However, afterwards erupted the joy and surprise of the inhabitants of the dark forest, when it turned out that the dark wizard had died, and Robin Hood remained alive! Only the Wise Owl was able to guess how Robin Hood had managed to defeat dark wizard. Try and guess as well.
Prove that the following facts are true for any graph:
a) The sum of degrees of all vertices is equal to twice the number of edges (and therefore it is even);
b) The number of vertices of odd degree is even.