A math circle student Emilio wrote a computer program for his house robot, Basil. Starting from 1, Basil should keep writing bigger and bigger numbers formed by 1s: 1, 11, 111, etc. The program terminates when Basil writes a number that is a multiple of 19. Prove that the program will terminate in fewer than 20 steps.
The number \(b^2\) is divisible by \(8\). Show that it must be divisible by \(16\).
Find a number which:
a) It is divisible by \(4\) and by \(6\), is has a total of 3 prime factors, which may be repeated.
b) It is divisible by \(6, 9\) and \(4\), but not divisible by \(27\). It has \(4\) prime factors in total, which may be repeated.
c) It is divisible by \(5\) and has exactly \(3\) positive divisors.
a) The number \(a\) is even. Should \(3a\) definitely also be even?
b) The number \(5c\) is divisible by \(3\). Is it true that \(c\) is definitely divisible by \(3\)?
c) The product \(a \times b\) is divisible by \(7\). Is it true that one of these numbers is divisible by \(7\)?
d) The product \(c \times d\) is divisible by \(26\). Is it true that one of these numbers is divisible by \(26\)?
a) The number \(a^2\) is divisible by \(11\). Is \(a^2\) necessarily also divisible by \(121\)?
b) The number \(b^2\) is divisible by \(12\). Is \(b^2\) necessarily also divisible by \(144\)?
a) Prove that a number is divisible by \(8\) if and only if the number formed by its laast three digits is divisible by \(8\).
b) Can you find an analogous rule for \(16\)? What about \(32\)?
Look at this formula found by Euler: \(n^2 +n +41\). It has a remarkable property: for every integer number from \(1\) to \(21\) it always produces prime numbers. For example, for \(n=3\) it is \(53\), a prime. For \(n=20\) it is \(461\), also a prime, and for \(n=21\) it is \(503\), prime as well. Could it be that this formula produces a prime number for any natural \(n\)?
Denote by \(n!\) (called \(n\)-factorial) the following product \(n!=1\cdot 2\cdot 3\cdot 4\cdot...\cdot n\). Show that if \(n!+1\) is divisible by \(n+1\), then \(n+1\) must be prime. (It is also true that if \(n+1\) is prime, then \(n!+1\) is divisible by \(n+1\), but you don’t need to show that!)
a) In a canteen, every day a chef prepares three lunch options customers can choose from. He is not a very good chef, but he knows six meals he can prepare very well. Every day, he chooses three out of these six and offers them. The options are presented left to right and we consider a lunch different if the three options are in different order, even if they are the same. For how many days can the chef go on, without repeating himself?
b) The customers have seen through chef’s plot and they realized that the order of the options does not in fact matter – there are still the same three lunches to choose from. If the chef now wants every day to be different, for how many days can he prepare different three meals each day?
A magician has \(10\) ingredients used for brewing potions. Any \(6\) have to be combined in order for brewing to be successful. How many different potions can the magician brew?