Problems

Age
Difficulty
Found: 845

101 random points are chosen inside a unit square, including on the edges of the square, so that no three points lie on the same straight line. Prove that there exist some triangles with vertices on these points, whose area does not exceed 0.01.

2011 numbers are written on a blackboard. It turns out that the sum of any of these written numbers is also one of the written numbers. What is the minimum number of zeroes within this set of 2011 numbers?

We are given a polynomial \(P(x)\) and numbers \(a_1\), \(a_2\), \(a_3\), \(b_1\), \(b_2\), \(b_3\) such that \(a_1a_2a_3 \ne 0\). It turned out that \(P (a_1x + b_1) + P (a_2x + b_2) = P (a_3x + b_3)\) for any real \(x\). Prove that \(P (x)\) has at least one real root.

11 scouts are working on 5 different badges. Prove that there will be two scouts \(A\) and \(B\), such that every badge that \(A\) is working towards is also being worked towards by \(B\).

Each of the 102 pupils of one school is friends with at least 68 others. Prove that among them there are four who have the same number of friends.

In some state, there are 101 cities.

a) Each city is connected to each of the other cities by one-way roads, and 50 roads lead into each city and 50 roads lead out of each city. Prove that you can get from each city to any other, having travelled on no more than on two roads.

b) Some cities are connected by one-way roads, and 40 roads lead into each city and 40 roads lead out of each. Prove that you can get form each city to any other, having travelled on no more than on three roads.

In the oriented graph, there are 101 vertices. For each vertex, the number of ingoing and outgoing edges is 40. Prove that from each vertex you can get to any other, having gone along no more than three edges.

There are 100 notes of two types: \(a\) and \(b\) pounds, and \(a \neq b \pmod {101}\). Prove that you can select several bills so that the amount received (in pounds) is divisible by 101.