Prove that rational numbers from \([0; 1]\) can be covered by a system of intervals of total length no greater than \(1/1000\).
A city in the shape of a triangle is divided into 16 triangular blocks, at the intersection of any two streets is a square (there are 15 squares in the city). A tourist began to walk around the city from a certain square and travelled along some route to some other square, whilst visiting every square exactly once. Prove that in the process of travelling the tourist at least 4 times turned by \(120^{\circ}\).
Does a continuous function that takes every real value exactly 3 times exist?
Prove that a convex quadrilateral \(ICEF\) can contain a circle if and only if \(IC+EH = CE+IF\).
Two circles of radius \(R\) touch at point \(E\). On one of them, point \(B\) is chosen and on the other point \(D\) is chosen. These points have a property of \(\angle BED = 90^{\circ}\). Prove that \(BD = 2R\).
A \(3\times 4\) rectangle contains 6 points. Prove that amongst them there will be two points, such that the distance between them is no greater than \(\sqrt5\).
There are 25 points on a plane, and among any three of them there can be found two points with a distance between them of less than 1. Prove that there is a circle of radius 1 containing at least 13 of these points.
A unit square contains 51 points. Prove that it is always possible to cover three of them with a circle of radius \(\frac{1}{7}\).
What is the minimum number of points necessary to mark inside a convex \(n\)-sided polygon, so that at least one marked point always lies inside any triangle whose vertices are shared with those of the polygon?
Several chords are drawn through a unit circle. Prove that if each diameter intersects with no more than \(k\) chords, then the total length of all the chords is less than \(\pi k\).