Prove that the following polynomial does not have any identical roots: \(P(x) = 1 + x + x^2/2! + \dots + x^n/n!\)
Prove that the polynomial \(x^{2n} - nx^{n + 1} + nx^{n - 1} - 1\) for \(n > 1\) has a triple root of \(x = 1\).
Let it be known that all the roots of some equation \(x^3 + px^2 + qx + r = 0\) are positive. What additional condition must be satisfied by its coefficients \(p, q\) and \(r\) in order for it to be possible to form a triangle from segments whose lengths are equal to these roots?
It is known that \(\cos \alpha^{\circ} = 1/3\). Is \(\alpha\) a rational number?
Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).
a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.
b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).
Prove that amongst any 7 different numbers it is always possible to choose two of them, \(x\) and \(y\), so that the following inequality was true: \[0 < \frac{x-y}{1+xy} < \frac{1}{\sqrt3}.\]
The iterative formula of Heron. Prove that the sequence of numbers \(\{x_n\}\) given by the conditions \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + k/x_n)\), converges. Find the limit of this sequence.
The algorithm of the approximate calculation of \(\sqrt[3]{a}\). The sequence \(\{a_n\}\) is defined by the following conditions: \(a_0 = a > 0\), \(a_{n + 1} = 1/3 (2a_n + a/a^2_n)\) (\(n \geq 0\)).
Prove that \(\lim\limits_{n\to\infty} a_n = \sqrt[3]{a}\).
The sequence of numbers \(\{a_n\}\) is given by \(a_1 = 1\), \(a_{n + 1} = 3a_n/4 + 1/a_n\) (\(n \geq 1\)). Prove that:
a) the sequence \(\{a_n\}\) converges;
b) \(|a_{1000} - 2| < (3/4)^{1000}\).