2022 points are selected from a cube, whose edge is equal to 13 units. Is it possible to place a cube with edge of 1 unit in this cube so that there is not one selected point inside it?
The number \(A\) is divisible by \(1, 2, 3, \dots , 9\). Prove that if \(2A\) is presented in the form of a sum of some natural numbers smaller than 10, \(2A= a_1 +a_2 +\dots +a_k\), then we can always choose some of the numbers \(a_1, a_2, \dots , a_k\) so that the sum of the chosen numbers is equal to \(A\).
Two people play a game with the following rules: one of them guesses a set of integers \((x_1, x_2, \dots , x_n)\) which are single-valued digits and can be either positive or negative. The second person is allowed to ask what is the sum \(a_1x_1 + \dots + a_nx_n\), where \((a_1, \dots ,a_n)\) is any set. What is the smallest number of questions for which the guesser recognizes the intended set?
A table of \(4\times4\) cells is given, in some cells of which a star is placed. Show that you can arrange seven stars so that when you remove any two rows and any two columns of this table, there will always be at least one star in the remaining cells. Prove that if there are fewer than seven stars, you can always remove two rows and two columns so that all the remaining cells are empty.
120 unit squares are placed inside a \(20 \times 25\) rectangle. Prove that it will always be possible to place a circle with diameter 1 inside the rectangle, without it overlapping with any of the unit squares.
What is the largest amount of numbers that can be selected from the set 1, 2, ..., 1963 so that the sum of any two numbers is not divisible by their difference?
Several pieces of carpet are laid along a corridor. Pieces cover the entire corridor from end to end without omissions and even overlap one another, so that over some parts of the floor lie several layers of carpet. Prove that you can remove a few pieces, perhaps by taking them out from under others and leaving the rest exactly in the same places they used to be, so that the corridor will still be completely covered and the total length of the pieces left will be less than twice the length corridor.
At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum?
It is known that a camera located at \(O\) cannot see the objects \(A\) and \(B\), where the angle \(AOB\) is greater than \(179^\circ\). 1000 such cameras are placed in a Cartesian plane. All of the cameras simultaneously take a picture. Prove that there will be a picture taken in which no more than 998 cameras are visible.
In the country of Mara there are several castles. Three roads lead from each castle. A knight left from one of the castles. Traveling along the roads, he turns from each castle standing in his way, either to the right or to the left depending on the road on which he came. The knight never turns to the side which he turned before it. Prove that one day he will return to the original castle.