Problems

Age
Difficulty
Found: 788

The first player is thinking about a finite sequence of numbers \(a_1,a_2, ..., a_n\). The second player can try to find the sequence by naming his own sequence \(b_1, b_2, ...b_n\), after that the first player will tell the result \(a_1b_1 + a_2b_2 + ...a_nb_n\). In the next step the second player can say another sequence \(c_1, c_2, ...c_n\) to get another answer \(a_1c_1+ a_2c_2 + ... a_nc_n\). Find the smallest amount of steps the second player has to take to find out the sequence \(a_1,a_2,...a_n\).

Michael made a cube with edge \(1\) out of eight bars as on the picture. It is known that all the bars, regardless of color have the same volume, the grey bars are the same and the white bars are also the same. Find the lengths of the edges of the white bar.

image

Red, blue and green chameleons live on the island, one day \(35\) chameleons stood in a circle. A minute later, they all changed color at the same time, each changed into the color of one of their neighbours. A minute later, everyone again changed the colors at the same time into the color of one of their neighbours. Could it turn out that each chameleon turned red, blue, and green at some point?

Is it possible to paint \(15\) segments in the picture below in three colours in such a way, that no three segments of the same colour have a common end?

image

In the \(n\times n\) table, the two opposite corner squares are black and the rest are white. Find the smallest number of white cells that is enough to be repainted black in order to make all the cells of the table black with only there transformations: repaint all the cells of one column, or all the cells of one row into the opposite colour.

Split the numbers from \(1\) to \(9\) into three triplets such that the sum of the three numbers in each triplet is prime. For example, if you split them into \(124\), \(356\) and \(789\), then the triplet \(124\) is correct, since \(1+2+4=7\) is prime. But the other two triples are incorrect, since \(3+5+6=14\) and \(7+8+9=24\) are not prime.

A family is going on a big holiday, visiting Austria, Bulgaria, Cyprus, Denmark and Estonia. They want to go to Estonia before Bulgaria. How many ways can they visit the five countries, subject to this constraint?

Let \(p\), \(q\) and \(r\) be distinct primes at least \(5\). Can \(p^2+q^2+r^2\) be prime? If yes, then give an example. If no, then prove it.

How many subsets of \(\{1,2,...,n\}\) (that is, the integers from \(1\) to \(n\)) have an even product? For the purposes of this question, take the product of the numbers in the empty set to be \(1\).

How many subsets are there of \(\{1,2,...,n\}\) (the integers from \(1\) to \(n\) inclusive) containing no consecutive digits? That is, we do count \(\{1,3,6,8\}\) but do not count \(\{1,3,6,7\}\).