Problems

Age
Difficulty
Found: 846

Prove that every pair of consecutive Fibonacci numbers are coprime. That is, they share no common factors other than 1.

Calculate the following: \(F_1^2-F_0F_2\), \(F_2^2-F_1F_3\), \(F_3^2-F_2F_4\), \(F_4^2-F_3F_5\) and \(F_5^2-F_4F_6\). What do you notice?

Work out \(F_3^2-F_0F_6\), \(F_4^2-F_1F_7\), \(F_5^2-F_2F_8\) and \(F_6^2-F_3F_9\). What pattern do you spot?

Can every whole number be written as the sum of two Fibonacci numbers? If yes, then prove it. If not, then give an example of a number that can’t be. The two Fibonacci numbers don’t have to be different.

What’s \(\sum_{i=0}^nF_i^2=F_0^2+F_1^2+F_2^2+...+F_{n-1}^2+F_n^2\) in terms of just \(F_n\) and \(F_{n+1}\)?

What are the ratios \(\frac{F_2}{F_1}\), \(\frac{F_3}{F_2}\), and so on until \(\frac{F_7}{F_6}\)? What do you notice about them?

In the example, we saw that \(\varphi^2=\varphi+1\). Can you write \(\varphi^3\) in the form \(a\varphi+b\), where \(a\) and \(b\) are positive integers?

Let \(m\) and \(n\) be positive integers. What positive integers can be written as \(m+n+\gcd(m,n)+\text{lcm}(m,n)\), for some \(m\) and \(n\)?

Denote by \(GCD(m,n)\) the greatest common divisor of numbers \(m,n\), namely the largest possible \(d\) which divides both \(n\) and \(m\). Prove for any \(m,n\) that \[GCD(F_n,F_m) = F_{GCD(m,n)}.\]