Problems

Age
Difficulty
Found: 800

Let \(p\) be a prime number greater than \(3\). Prove that \(p^2-1\) is divisible by \(12\).

You meet an alien, who you learn is thinking of a positive integer \(n\). They ask the following three questions.

“Am I the kind who could ask whether \(n\) is divisible by no primes other than \(2\) or \(3\)?"

“Am I the kind who could ask whether the sum of the divisors of \(n\) (including \(1\) and \(n\) themselves) is at least twice \(n\)?"

“Is \(n\) divisible by 3?"

Is this alien a Crick or a Goop?

Suppose that \(p\) is a prime number. How many numbers are there less than \(p^2\) that are relatively prime to \(p^2\)?

How many cuboids are contained in an \(n\times n\times n\) cube? For example, we’ve got \(n^3\) cuboids of size \(1\times1\times1\), and obviously just \(1\) of size \(n\times n\times n\) (which is the whole cube itself). But we also have to count how many there of size \(1\times1\times2\), \(1\times2\times3\), and several more.

In the \(6\times7\) large rectangle shown below, how many rectangles are there in total formed by grid lines?

image

Simplify \(F_0-F_1+F_2-F_3+...-F_{2n-1}+F_{2n}\), where \(n\) is a positive integer.

What’s the sum of the Fibonacci numbers \(F_0+F_1+F_2+...+F_n\)?

What’s the sum \(\frac{F_2}{F_1}+\frac{F_4}{F_2}+\frac{F_6}{F_3}+...+\frac{F_{18}}{F_9}+\frac{F_{20}}{F_{10}}\)?