Two points are placed inside a convex pentagon. Prove that it is always possible to choose a quadrilateral that shares four of the five vertices on the pentagon, such that both of the points lie inside or on the boundary the quadrilateral.
You are given 10 different positive numbers. In which order should they be named \(a_1, a_2, \dots , a_{10}\) such that the sum \(a_1 +2a_2 +3a_3 +\dots +10a_{10}\) is at its maximum?
A pentagon is inscribed in a circle of radius 1. Prove that the sum of the lengths of its sides and diagonals is less than 17.
A Cartesian plane is coloured in in two colours. Prove that there will be two points on the plane that are a distance of 1 apart and are the same colour.
10 guests came to a party and each left a pair of shoes in the corridor (all guests have the same shoes). All pairs of shoes are of different sizes. The guests began to disperse one by one, putting on any pair of shoes that they could fit into (that is, each guest could wear a pair of shoes no smaller than his own). At some point, it was discovered that none of the remaining guests could find a pair of shoes so that they could leave. What was the maximum number of remaining guests?
On a plane, there are given 2004 points. The distances between every pair of points is noted. Prove that among these noted distances at least thirty numbers are different.
How can one measure out 15 minutes, using an hourglass of 7 minutes and 11 minutes?
Prove that, if \(b=a-1\), then \[(a+b)(a^2 +b^2)(a^4 +b^4)\dotsb(a^{32} +b^{32})=a^{64} -b^{64}.\]
Solve the equation \(xy = x + y\) in integers.
There are three sets of dominoes of different colours. How can you put the dominoes from all three sets into a chain (according to the rules of the game) so that every two neighbouring dominoes are of a different colour?